Intel 8086
MICROPROCESSOR ARCHITECTURE
Features

• **It is a 16-bit μp.**

• **8086 has a 20 bit address bus can access up to 2^{20} memory locations (1 MB).**

• **It can support up to 64K I/O ports.**

• **It provides 14, 16-bit registers.**

• **Word size is 16 bits and double word size is 4 bytes.**

• **It has multiplexed address and data bus AD0- AD15 and A16 – A19.**
• 8086 is designed to operate in two modes, Minimum and Maximum.

• It can prefetches up to 6 instruction bytes from memory and queues them in order to speed up instruction execution.

• It requires +5V power supply.

• A 40 pin dual in line package.

• Address ranges from 00000H to FFFFFFFH
Intel 8086 Internal Architecture

FIGURE 8086 internal block diagram. (Intel Corp.)
Internal architecture of 8086

- 8086 has two blocks BIU and EU.
- The BIU handles all transactions of data and addresses on the buses for EU.
- The BIU performs all bus operations such as instruction fetching, reading and writing operands for memory and calculating the addresses of the memory operands. The instruction bytes are transferred to the instruction queue.
- EU executes instructions from the instruction system byte queue.
• BIU contains Instruction queue, Segment registers, Instruction pointer, Address adder.

• EU contains Control circuitry, Instruction decoder, ALU, Pointer and Index register, Flag register.
EXECUTION UNIT

- Decodes instructions fetched by the BIU
- Generate control signals,
- Executes instructions.

The main parts are:

- Control Circuitry
- Instruction decoder
- ALU
EXECUTION UNIT – General Purpose Registers

- **AX**
 - AH
 - AL
 - Accumulator

- **BX**
 - BH
 - BL
 - Base

- **CX**
 - CH
 - CL
 - Count

- **DX**
 - DH
 - DL
 - Data

- **SP**
 - Stack Pointer

- **BP**
 - Base Pointer

- **SI**
 - Source Index

- **DI**
 - Destination Index
EXECUTION UNIT – General Purpose Registers

<table>
<thead>
<tr>
<th>Register</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX</td>
<td>Word multiply, word divide, word I/O</td>
</tr>
<tr>
<td>AL</td>
<td>Byte multiply, byte divide, byte I/O, decimal arithmetic</td>
</tr>
<tr>
<td>AH</td>
<td>Byte multiply, byte divide</td>
</tr>
<tr>
<td>BX</td>
<td>Store address information</td>
</tr>
<tr>
<td>CX</td>
<td>String operation, loops</td>
</tr>
<tr>
<td>CL</td>
<td>Variable shift and rotate</td>
</tr>
</tbody>
</table>
| DX | Word multiply, word divide, indirect I/O
(Used to hold I/O address during I/O instructions. If the result is more than 16-bits, the lower order 16-bits are stored in accumulator and higher order 16-bits are stored in DX register) |
Pointer And Index Registers

- used to keep offset addresses.
- Used in various forms of memory addressing.
- In the case of SP and BP the default reference to form a physical address is the Stack Segment (SS-will be discussed under the BIU)
- The index registers (SI & DI) and the BX generally default to the Data segment register (DS).

SP: Stack pointer
- Used with SS to access the stack segment

BP: Base Pointer
- Primarily used to access data on the stack
- Can be used to access data in other segments
• **SI: Source Index register**
 – is required for some string operations
 – When string operations are performed, the SI register points to memory locations in the data segment which is addressed by the DS register. Thus, SI is associated with the DS in string operations.

• **DI: Destination Index register**
 – is also required for some string operations.
 – When string operations are performed, the DI register points to memory locations in the data segment which is addressed by the ES register. Thus, DI is associated with the ES in string operations.

• The SI and the DI registers may also be used to access data stored in arrays
EXECUTION UNIT – Flag Register

• A flag is a **flip flop** which **indicates some conditions** produced by the execution of an instruction or **controls certain operations** of the EU.

• In 8086 The EU contains
 - a 16 bit flag register
 - 9 of the 16 are active flags and remaining 7 are undefined.
 - 6 flags indicates some conditions - status flags
 - 3 flags – control Flags

```
U U U U OF DF IF TF SF ZF U AF U PF U CF
```

- **Overflow**
- **Direction**
- **Interrupt**
- **Trap**
- **Sign**
- **Zero**
- **Auxiliary**
- **Parity**
- **Carry**

U - Unused
EXECUTION UNIT – Flag Register

<table>
<thead>
<tr>
<th>Flag</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry (CF)</td>
<td>Holds the carry after addition or the borrow after subtraction. Also indicates some error conditions, as dictated by some programs and procedures.</td>
</tr>
<tr>
<td>Parity (PF)</td>
<td>PF=0; odd parity, PF=1; even parity.</td>
</tr>
<tr>
<td>Auxiliary (AF)</td>
<td>Holds the carry (half – carry) after addition or borrow after subtraction between bit positions 3 and 4 of the result (for example, in BCD addition or subtraction.)</td>
</tr>
<tr>
<td>Zero (ZF)</td>
<td>Shows the result of the arithmetic or logic operation. Z=1; result is zero. Z=0; The result is 0</td>
</tr>
<tr>
<td>Sign (SF)</td>
<td>Holds the sign of the result after an arithmetic/logic instruction execution. S=1; negative, S=0</td>
</tr>
<tr>
<td>Flag</td>
<td>Purpose</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Trap (TF)</td>
<td>A control flag. Enables the trapping through an on-chip debugging feature.</td>
</tr>
<tr>
<td>Interrupt (IF)</td>
<td>A control flag. Controls the operation of the INTR (interrupt request)</td>
</tr>
<tr>
<td></td>
<td>I=0; INTR pin disabled. I=1; INTR pin enabled.</td>
</tr>
<tr>
<td>Direction (DF)</td>
<td>A control flag. It selects either the increment or decrement mode for DI</td>
</tr>
<tr>
<td></td>
<td>and /or SI registers during the string instructions.</td>
</tr>
<tr>
<td>Overflow (OF)</td>
<td>Overflow occurs when signed numbers are added or subtracted. An overflow indicates the result has exceeded the capacity of the Machine</td>
</tr>
</tbody>
</table>
Execution unit – Flag Register

- Six of the flags are status indicators reflecting properties of the last arithmetic or logical instruction.
- For example, if register AL = 7Fh and the instruction ADD AL,1 is executed then the following happen:

 AL = 80h
 CF = 0; there is no carry out of bit 7
 PF = 0; 80h has an odd number of ones
 AF = 1; there is a carry out of bit 3 into bit 4
 ZF = 0; the result is not zero
 SF = 1; bit seven is one
 OF = 1; the sign bit has changed
BUS INTERFACE UNIT (BIU)

Contains

- 6-byte Instruction Queue (Q)
- The Segment Registers (CS, DS, ES, SS).
- The Instruction Pointer (IP).
- The Address Summing block (Σ)
THE QUEUE (Q)

• The BIU uses a mechanism known as an instruction stream queue to implement a pipeline architecture.

• This queue permits pre-fetch of up to 6 bytes of instruction code. Whenever the queue of the BIU is not full, it has room for at least two more bytes and at the same time the EU is not requesting it to read or write operands from memory, the BIU is free to look ahead in the program by pre-fetching the next sequential instruction.
Segmented Memory

- The memory in an 8086/88 based system is organized as segmented memory.
- The CPU 8086 is able to address 1Mbyte of memory.
- The Complete physically available memory may be divided into a number of logical segments.
• The size of each segment is 64 KB
• A segment may be located anywhere in the memory
• Each of these segments can be used for a specific function.
 – Code segment is used for storing the instructions.
 – The stack segment is used as a stack and it is used to store the return addresses.
 – The data and extra segments are used for storing data byte.
• The 4 segments are Code, Data, Extra and Stack segments.
• A Segment is a 64kbyte block of memory.
• The 16 bit contents of the segment registers in the BIU actually point to the starting location of a particular segment.
• Segments may be overlapped or non-overlapped
Segment registers

• In 8086/88 the processors have 4 segments registers

• Code Segment register (CS), Data Segment register (DS), Extra Segment register (ES) and Stack Segment (SS) register.

• All are 16 bit registers.

• Each of the Segment registers store the upper 16 bit address of the starting address of the corresponding segments.
Memory Address Generation

Segment Register (16 bits) 0 0 0 0

Offset Value (16 bits)

Adder

Physical Address (20 Bits)
The following examples show the CS:IP scheme of address formation:

Inserting a hexadecimal 0H (0000B) with the CSR or shifting the CSR four binary digits left.

\[
\begin{align*}
34BA & \quad (C S) \\
0 \quad & \quad (C S R) \\
8AB4 & \quad (I P) \\
\hline
3D654 & \quad (n e x t \ a d d r e s s)
\end{align*}
\]
Segment and Address register combination

- CS:IP
- SS:SP SS:BP
- DS:BX DS:SI
- DS:DI (for other than string operations)
- ES:DI (for string operations)
Summary of Registers & Pipeline of 8086 µP

EU

<table>
<thead>
<tr>
<th>AX</th>
<th>AH</th>
<th>AL</th>
</tr>
</thead>
<tbody>
<tr>
<td>BX</td>
<td>BH</td>
<td>BL</td>
</tr>
<tr>
<td>CX</td>
<td>CH</td>
<td>CL</td>
</tr>
<tr>
<td>DX</td>
<td>DH</td>
<td>DL</td>
</tr>
</tbody>
</table>

BIU

<table>
<thead>
<tr>
<th>SP</th>
<th>BP</th>
<th>SI</th>
<th>DI</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>DS</td>
<td>ES</td>
<td>SS</td>
</tr>
<tr>
<td>IP</td>
<td>BX</td>
<td>DI</td>
<td>SP</td>
</tr>
<tr>
<td>SI</td>
<td>BP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decoder

ALU

Timing control

Fetch & store code bytes in PIPELINE (or) QUEUE

Decoder

PIPELINE

Default Assignment
THANK YOU