
INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 1

INTRODUCTION TO JAVA BEANS

Software components are self-contained software units developed according to the motto “Developed them
once, run and reused them everywhere”. Or in other words, reusability is the main concern behind the
component model.
A software component is a reusable object that can be plugged into any target software application.
You can develop software components using various programming languages, such as C, C++, Java, and Visual
Basic.

� A “Bean” is a reusable software component model based on sun’s java bean specification that can be
manipulated visually in a builder tool.

� The term software component model describe how to create and use reusable software components to
build an application

� Builder tool is nothing but an application development tool which lets you both to create new beans or
use existing beans to create an application.

� To enrich the software systems by adopting component technology JAVA came up with the concept
called Java Beans.

� Java provides the facility of creating some user defined components by means of Bean programming.
� We create simple components using java beans.
� We can directly embed these beans into the software.

Advantages of Java Beans:

� The java beans posses the property of “Write once and run anywhere”.
� Beans can work in different local platforms.
� Beans have the capability of capturing the events sent by other objects and vice versa enabling object

communication.
� The properties, events and methods of the bean can be controlled by the application developer.(ex. Add

new properties)
� Beans can be configured with the help of auxiliary software during design time.(no hassle at runtime)
� The configuration setting can be made persistent.(reused)
� Configuration setting of a bean can be saved in persistent storage and restored later.

What can we do/create by using JavaBean:
There is no restriction on the capability of a Bean.

� It may perform a simple function, such as checking the spelling of a document, or a complex function,
such as forecasting the performance of a stock portfolio. A Bean may be visible to an end user. One
example of this is a button on a graphical user interface.

� Software to generate a pie chart from a set of data points is an example of a Bean that can execute
locally.

� Bean that provides real-time price information from a stock or commodities exchange.

Definition of a builder tool:

Builder tools allow a developer to work with JavaBeans in a convenient way. By examining a JavaBean by a
process known as Introspection, a builder tool exposes the discovered features of the JavaBean for visual
manipulation. A builder tool maintains a list of all JavaBeans available. It allows you to compose the Bean into
applets, application, servlets and composite components (e.g. a JFrame), customize its behavior and
appearance by modifying its properties and connect other components to the event of the Bean or vice versa.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 2

Some Examples of Application Builder tools:

TOOL VENDOR DESCRIPTION

Java Workshop2.0 Sun MicroSystems., Inc., Complete IDE that support applet,
application and bean development

Visual age for java IBM Bean Oriented visual development
toolset.

Jbuilder Borland Inc. Suit of bean oriented java
development tool

Beans Development Kit SunMicroSystems., Inc., Supports only Beans development

JavaBeans basic rules
A JavaBean should:

 be public
 implement the Serializable interface
 have a no-arg constructor
 be derived from javax.swing.JComponent or java.awt.Component if it is visual

The classes and interfaces defined in the java.beans package enable you to create JavaBeans.
The Java Bean components can exist in one of the following three phases of development:

• Construction phase
• Build phase
• Execution phase

It supports the standard component architecture features of
� Properties
� Events
� Methods
� Persistence.

In addition Java Beans provides support for
� Introspection (Allows Automatic Analysis of a java beans)
� Customization(To make it easy to configure a java beans component)

Elements of a JavaBean:

� Properties
Similar to instance variables.

A bean property is a named attribute of a bean that can affect its behavior or appearance. Examples of
bean properties include color, label, font, font size, and display size.
� Methods

� Same as normal Java methods.
� Every property should have accessor (get) and mutator (set) method.
� All Public methods can be identified by the introspection mechanism.
� There is no specific naming standard for these methods.

� Events
 Similar to Swing/AWT event handling.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 3

The JavaBean Component Specification:
Customization: Is the ability of JavaBean to allow its properties to be changed in build and execution phase.
Persistence:- Is the ability of JavaBean to save its state to disk or storage device and restore the saved state
when the JavaBean is reloaded.
Communication:-Is the ability of JavaBean to notify change in its properties to other JavaBeans or the
container.
Introspection:- Is the ability of a JavaBean to allow an external application to query the properties,
methods, and events supported by it.

Services of JavaBean Components
Builder support:- Enables you to create and group multiple JavaBeans in an application.
Layout:- Allows multiple JavaBeans to be arranged in a development environment.
Interface publishing: Enables multiple JavaBeans in an application to communicate with each other.
Event handling:- Refers to firing and handling of events associated with a JavaBean.
Persistence:- Enables you to save the last state of JavaBean.
Features of a JavaBean
� Support for “introspection” so that a builder tool can analyze how a bean works.
� Support for “customization” to allow the customisation of the appearance and behaviour of a bean.
� Support for “events” as a simple communication metaphor than can be used to connect up beans.
� Support for “properties”, both for customization and for programmatic use.
� Support for “persistence”, so that a bean can save and restore its customized state.

JavaBean
Component

BeanInfo

Events

Methods

Properties

JARCustomizer

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 4

Beans Development Kit
Is a development environment to create, configure, and test JavaBeans.
The features of BDK environment are:

• Provides a GUI to create, configure, and test JavaBeans.
• Enables you to modify JavaBean properties and link multiple JavaBeans in an application

using BDK.
• Provides a set of sample JavaBeans.
• Enables you to associate pre-defined events with sample JavaBeans.

Identifying BDK Components

• Execute the run.bat file of BDK to start the BDK development environment.
• The components of BDK development environment are:

• ToolBox
• BeanBox
• Properties
• Method Tracer

ToolBox window: Lists the sample JavaBeans of BDK.
The following figure shows the ToolBox window:

BeanBox window:
Is a workspace for creating the layout of JavaBean application.

• The following figure shows the BeanBox window:

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 5

Properties window:
Displays all the exposed properties of a JavaBean. You can modify JavaBean properties in the properties
window.
The following figure shows the Properties window:

Method Tracer window:
Displays the debugging messages and method calls for a JavaBean application.
The following figure shows the Method Tracer window:

Steps to Develop a User-Defined JavaBean:

1. Create a directory for the new bean
2. Create the java bean source file(s)
3. Compile the source file(s)
4. Create a manifest file
5. Generate a JAR file
6. Start BDK
7. Load Jar file
8. Test.

1. Create a directory for the new bean
Create a directory/folder like C:\Beans

2. Create bean source file - MyBean.java
import java.awt.*;
public class MyBean extends Canvas
{
public MyBean()
 {
 setSize(70,50);
 setBackground(Color.green);
 }
}

3. Compile the source file(s)
C:\Beans >Javac MyBean.java

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 6

4. Create a manifest file
Manifest File

• The manifest file for a JavaBean application contains a list of all the class files that make up a
JavaBean.

• The entry in the manifest file enables the target application to recognize the JavaBean classes for
an application.

• For example, the entry for the MyBean JavaBean in the manifest file is as shown:

Note: write that 2 lines code in the notepad and save that file as MyBean.mf
The rules to create a manifest file are:

• Press the Enter key after typing each line in the manifest file.
• Leave a space after the colon.
• Type a hyphen between Java and Bean.
• No blank line between the Name and the Java-Bean entry.

5. Generate a JAR file

� Syntax for creating jar file using manifest file
C:\Beans >jar cfm MyBean.jar MyBean.mf MyBean.class

JAR file:

� JAR file allows you to efficiently deploy a set of classes and their associated resources.
� JAR file makes it much easier to deliver, install, and download. It is compressed.

Java Archive File

• The files of a JavaBean application are compressed and grouped as JAR files to reduce
the size and the download time of the files.

• The syntax to create a JAR file from the command prompt is:
• jar <options> <file_names>
• The file_names is a list of files for a JavaBean application that are stored in the JAR file.

The various options that you can specify while creating a JAR file are:

� c: Indicates the new JAR file is created.
� f: Indicates that the first file in the file_names list is the name of the JAR

file.
� m: Indicates that the second file in the file_names list is the name of the

manifest file.
� t: Indicates that all the files and resources in the JAR file are to be

displayed in a tabular format.
� v: Indicates that the JAR file should generate a verbose output.
� x: Indicates that the files and resources of a JAR file are to be extracted.
� o: Indicates that the JAR file should not be compressed.
� m: Indicates that the manifest file is not created.

6. Start BDK
Go to->
C:\bdk1_1\beans\beanbox
Click on run.bat file. When we click on run.bat file the BDK software automatically started.

Manifest-Version: 1.0
Name: MyBean.class
Java-Bean: true

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 7

7. Load Jar file
Go to
Beanbox->File->Load jar. Here we have to select our created jar file when we click on ok, our
bean(userdefined) MyBean appear in the ToolBox.

8. Test our created user defined bean
Select the MyBean from the ToolBox when we select that bean one + simple appear then drag that Bean in to
the Beanbox.
If you want to apply events for that bean, now we apply the events for that Bean.

Introspection:

� Introspection can be defined as the technique of obtaining information about bean properties, events and
methods.

� Basically introspection means analysis of bean capabilities.
� Introspection is the automatic process by which a builder tool finds out which properties, methods, and

events a bean supports.
� Introspection describes how methods, properties, and events are discovered in the beans that you write.
� This process controls the publishing and discovery of bean operations and properties
� Without introspection, the JavaBeans technology could not operate.

BDK Introspection:

� Allows automatic analysis of a java beans component
� Enables a builder tool to analyze how a bean works.

 (Or)
� A mechanism that allows classes to publish the operations and properties they support and a mechanism

to support the discovery of such mechanism.
� Introspection can be defined as the technique of obtaining information about bean properties, events and

methods.
� Basically introspection means analysis of bean capabilities.

There are two ways in which the developer of a Bean can indicate which of its properties, events, and methods
should be exposed by an builder tool. With the first method, simple naming conventions are used. These allow
the introspection mechanisms to infer information about a Bean. In the second way, an additional class is
provided that explicitly supplies this information.

Design patterns for JavaBean Properties:-

A property is a subset of a Bean’s state.
A bean property is a named attribute of a bean that can affect its behavior or appearance. Examples of bean
properties include color, label, font, font size, and display size.
Properties are the private data members of the JavaBean classes.
Properties are used to accept input from an end user in order to customize a JavaBean.
Properties can retrieve and specify the values of various attributes, which determine the behavior of a JavaBean.

Types of JavaBeans Properties

• Simple properties
• Boolean properties
• Indexed properties

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 8

Simple Properties:
 Simple properties refer to the private variables of a JavaBean that can have only a single value.
Simple properties are retrieved and specified using the get and set methods respectively.

� A read/write property has both of these methods to access its values. The get method used to read the
value of the property .The set method that sets the value of the property.

� The setXXX() and getXXX() methods are the heart of the java beans properties mechanism. This is also

called getters and setters. These accessor methods are used to set the property .

The syntax of get method is:

 public return_type get<PropertyName>()
public T getN();
public void setN(T arg)
� N is the name of the property and T is its type

Ex:
public double getDepth()
{
return depth;
}

Read only property has only a get method.
The syntax of set method is:

 public void set<PropertyName>(data_type value)
Ex:
public void setDepth(double d)
{
Depth=d;
}

Write only property has only a set method.

Boolean Properties:

� A Boolean property is a property which is used to represent the values True or False.

Have either of the two values, TRUE or FALSE.
It can identified by the following methods:
Syntax:

Let N be the name of the property and T be the type of the value then
 public boolean isN();
 public void setN(boolean parameter);
 public Boolean getN();

• public boolean is<PropertyName>()
• public boolean get<PropertyName>()

First or second pattern can be used to retrieve the value of a Boolean.

• public void set<PropertyName>(boolean value)
For getting the values isN() and getN() methods are used and for setting the Boolean values setN() method is
used.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 9

Ex:
public boolean dotted=false;
public boolean isDotted()
{
return dotted;
}
public void setDotted(boolean dotted)
{
this.dotted=dotted;
}

Indexed Properties:
Indexed Properties are consists of multiple values.
If a simple property can hold an array of value they are no longer called simple but
instead indexed properties. The method’s signature has to be adapted accordingly. An
indexed property may expose set/get methods to read/write one element in the array
(so-called ’index getter/setter’) and/or so-called ’array getter/setter’ which read/write
the entire array.

Indexed Properties enable you to set or retrieve the values from an array of property values.
Indexed Properties are retrieved using the following get methods:
Syntax:public int[] get<PropertyName>()
Ex:
private double data[];
 public double getData(int index)
 {
 return data[index];
 }
Syntax:public property_datatype get<PropertyName>(int index)
Ex:
public void setData(int index,double value)
{
Data[index]=value;
}
Indexed Properties are specified using the following set methods:
Syntax:
public void set<PropertyName>(int index, property_datatype value)
EX:
public double[] getData()
{
return data;
}
Syntax :
public void set<PropertyName>(property_datatype[] property_array)
Ex:
 public void setData(double[] values)
{
}

The properties window of BDK does not handle indexed properties. Hence the output can not be displayed here.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 10

Bound Properties:
A bean that has a bound property generates an event when the property is changed.
Bound Properties are the properties of a JavaBean that inform its listeners about changes in its values.
Bound Properties are implemented using the PropertyChangeSupport class and its methods.
Bound Properties are always registered with an external event listener.
The event is of type PropertyChangeEvent and is sent to objects that previously egistered an interest in
receiving such notifications
bean with bound property - Event source
Bean implementing listener -- event target

In order to provide this notification service a JavaBean needs to have the following two methods:
public void addPropertyChangeListener(PropertyChangeListener p) {

changes.addPropertyChangeListener(p);
}
public void removePropertyChangeListener(PropertyChangeListener p) {

changes.removePropertyChangeListener(p);
}

PropertyChangeListener is an interface declared in the java.beans package. Observers which want to be notified
of property changes have to implement this interface, which consists of only one method:
public interface PropertyChangeListener extends EventListener {
public void propertyChange(PropertyChangeEvent e);

}

Constrained Properties:
It generates an event when an attempt is made to change it value
Constrained Properties are implemented using the PropertyChangeEvent class.
The event is sent to objects that previously registered an interest in receiving an such notification
Those other objects have the ability to veto the proposed change
This allows a bean to operate differently according to the runtime environment

A bean property for which a change to the property results in validation by another bean. The other bean may
reject the change if it is not appropriate.
Constrained Properties are the properties that are protected from being changed by other JavaBeans.
Constrained Properties are registered with an external event listener that has the ability to either accept or reject
the change in the value of a constrained property.
Constrained Properties can be retrieved using the get method. The prototype of the get method is:
Syntax:public string get<ConstrainedPropertyName>()
Can be specified using the set method. The prototype of the set method is:
Syntax :public string set<ConstrainedPropertyName>(String str)throws PropertyVetoException

Design Patterns for Events:

Handling Events in JavaBeans:
Enables Beans to communicate and connect together.
Beans generate events and these events can be sent to other objects.
Event means any activity that interrupts the current ongoing activity.
Example: mouse clicks, pressing key…

User-defined JavaBeans interact with the help of user-defined events, which are also called custom events.
You can use the Java event delegation model to handle these custom events.
The components of the event delegation model are:

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 11

• Event Source: Generates the event and informs all the event listeners that are registered
with it.

• Event Listener: Receives the notification, when an event source generates an event.
• Event Object: Represents the various types of events that can be generated by the event

sources.
Creating Custom Events:
The classes and interfaces that you need to define to create the custom JavaBean events are:

• An event class to define a custom JavaBean event.
• An event listener interface for the custom JavaBean event.
• An event handler to process the custom JavaBean event.
• A target Java application that implements the custom event.

Creating the Event Class:
The event class that defines the custom event extends the EventObject class of the java.util package. For
example,
 public class NumberEvent extends EventObject
 {
 public int number1,number2;
 public NumberEvent(Object o,int number1,int number2)
 {
 super(o);
 this.number1=number1;
 this.number2=number2;
 }
 }
Beans can generate events and send them toother objects.

Creating Event Listeners

• When the event source triggers an event, it sends a notification to the event listener
interface.

• The event listener interface implements the java.util.EventListener interface.
• Syntax:
• public void addTListener(TListener eventListener);
• public void addTListener(TListener eventListener)throws TooManyListeners;
• public void removeTListener(TListener eventListener);

• The target application that uses the custom event implements the custom listener. For

example,
public interface NumberEnteredListener extends EventListener
{
public void arithmeticPerformed(NumberEvent mec);
}

Creating Event Handler
Custom event handlers should define the following methods:

• addXXListener(): Registers listeners of a JavaBean event.
• fireXX(): Notifies the listeners of the occurrence of a JavaBean event.
• removeXXListener(): Removes a listener from the list of registered listeners of a

JavaBean.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 12

The code snippet to define an event handler for the custom event NumberEvent is:
public class NumberBean extends JPanel implements ActionListener
{
 public NumberBean()
 {}
 NumberEnteredListener mel;
 public void addNumberListener(NumberEnteredListener mel)
 {
 this.mel = mel;
 }
}

Persistence

Persistence means an ability to save properties and events of our beans to non-volatile storage and retrieve later.
It has the ability to save a bean to storage and retrieve it at a later time Configuration settings are saved It is
implemented by Java serialization.
If a bean inherits directly or indirectly from Component class it is automatically Serializable.
Transient keyword can be used to designate data members of a Bean that should not be serialized.

� Enables developers to customize Beans in an application builder, and then retrieve those Beans, with
customized features intact, for future use,perhaps in another environment.

� Java Beans supports two forms of persistence:
� Automatic persistence
� External persistence

Automatic Persistence:
Automatic persistence are java’s built-in serialization mechanism to save and restore the state of a bean.

External Persistence:
External persistence, on the other hand, gives you the option of supplying your own custom classes to control
precisely how a bean state is stored and retrieved.

� Juggle Bean.
� Building an applet
� Your own bean

Customizers:
The Properties window of the BDK allows a developer to modify the several properties of the Bean.
Property sheet may not be the best user interface for a complex component
It can provide step-by-step wizard guide to use component
It can provide a GUI frame with image which visually tells what is changed such as radio button, check box,
...
It can customize the appearance and behavior of the properties
Online documentation can also be provided. A Bean developer has great flexibility to develop a customizer
that can differentiate his or her product in the marketplace.
To make it easy to configure a java beans component
Enables a developer to use an application builder tool to customize the appearance and behavior of a bean

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 13

The Java Beans API:
The Java Beans functionality is provided by a set of classes and interfaces in the java.beans package. Table 25-
2 lists the interfaces in java.beans and provides a brief description of their functionality. Table 25-3 lists the
classes in java.beans.

Set of classes and interfaces in the java.beans package

Package java.beans

Contains classes related to developing beans -- components based on the JavaBeansTM architecture
Interface Summary

AppletInitializer This interface is designed to work in collusion with java.beans.Beans.instantiate.

BeanInfo
A bean implementor who wishes to provide explicit information about their bean may provide a
BeanInfo class that implements this BeanInfo interface and provides explicit information about the
methods, properties, events, etc, of their bean.

Customizer A customizer class provides a complete custom GUI for customizing a target Java Bean.

DesignMode
This interface is intended to be implemented by, or delegated from, instances of
java.beans.beancontext.BeanContext, in order to propagate to its nested hierarchy of
java.beans.beancontext.BeanContextChild instances, the current "designTime" property.

ExceptionListener An ExceptionListener is notified of internal exceptions.

PropertyChangeListener A "PropertyChange" event gets fired whenever a bean changes a "bound" property.

PropertyEditor
A PropertyEditor class provides support for GUIs that want to allow users to edit a property value
of a given type.

VetoableChangeListener A VetoableChange event gets fired whenever a bean changes a "constrained" property.

Visibility Under some circumstances a bean may be run on servers where a GUI is not available.

Class Summary

BeanDescriptor
A BeanDescriptor provides global information about a "bean", including its Java
class, its displayName, etc.

Beans This class provides some general purpose beans control methods.

DefaultPersistenceDelegate
The DefaultPersistenceDelegate is a concrete implementation of the
abstract PersistenceDelegate class and is the delegate used by default for
classes about which no information is available.

Encoder An Encoder is a class which can be used to create files or streams that encode the
state of a collection of JavaBeans in terms of their public APIs.

EventHandler
The EventHandler class provides support for dynamically generating event
listeners whose methods execute a simple statement involving an incoming event
object and a target object.

EventSetDescriptor An EventSetDescriptor describes a group of events that a given Java bean fires.

Expression
An Expression object represents a primitive expression in which a single method
is applied to a target and a set of arguments to return a result - as in
"a.getFoo ()" .

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 14

FeatureDescriptor
The FeatureDescriptor class is the common baseclass for PropertyDescriptor,
EventSetDescriptor, and MethodDescriptor, etc.

IndexedPropertyChangeEvent
An "IndexedPropertyChange" event gets delivered whenever a component that
conforms to the JavaBeans specification (a "bean") changes a bound indexed
property.

IndexedPropertyDescriptor
An IndexedPropertyDescriptor describes a property that acts like an array and has an
indexed read and/or indexed write method to access specific elements of the array.

Introspector
The Introspector class provides a standard way for tools to learn about the properties,
events, and methods supported by a target Java Bean.

MethodDescriptor
A MethodDescriptor describes a particular method that a Java Bean supports for
external access from other components.

ParameterDescriptor
The ParameterDescriptor class allows bean implementors to provide additional
information on each of their parameters, beyond the low level type information
provided by the java.lang.reflect.Method class.

PersistenceDelegate
The PersistenceDelegate class takes the responsibility for expressing the state of an
instance of a given class in terms of the methods in the class's public API.

PropertyChangeEvent
A "PropertyChange" event gets delivered whenever a bean changes a "bound" or
"constrained" property.

PropertyChangeListenerProxy
A class which extends the EventListenerProxy specifically for adding a
named PropertyChangeListener .

PropertyChangeSupport This is a utility class that can be used by beans that support bound properties.

PropertyDescriptor
A PropertyDescriptor describes one property that a Java Bean exports via a pair of
accessor methods.

PropertyEditorManager
The PropertyEditorManager can be used to locate a property editor for any given
type name.

PropertyEditorSupport This is a support class to help build property editors.

SimpleBeanInfo This is a support class to make it easier for people to provide BeanInfo classes.

Statement
A Statement object represents a primitive statement in which a single method is
applied to a target and a set of arguments - as in "a.setFoo(b)" .

VetoableChangeListenerProxy
A class which extends the EventListenerProxy specifically for associating a
VetoableChangeListener with a "constrained" property.

VetoableChangeSupport This is a utility class that can be used by beans that support constrained properties.

XMLDecoder
The XMLDecoder class is used to read XML documents created using the
XMLEncoder and is used just like the ObjectInputStream .

XMLEncoder

The XMLEncoder class is a complementary alternative to the
ObjectOutputStream and can used to generate a textual representation of a
JavaBean in the same way that the ObjectOutputStream can be used to create
binary representation of Serializable objects.

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 15

The BeanInfo Interface :

By default an Introspector uses the Reflection API to determine the features of a JavaBean.However, a
JavaBean can provide its own BeanInfo which will be used instead by the Introspector to determine the
discussed information. This allows a developer hiding specific properties, events and methods from a builder
tool or from any other tool which uses the Introspector class. Moreover it allows supplying further details about
events/properties/methods as you are in charge of creating the descriptor objects. Hence you can, for example,
call the setShortDescription() method to set a descriptive description. A BeanInfo class has to be derived from
the SimpleBeanInfo class and its name has to start with the name of the associated JavaBean. At this point it has
to be underlined that the name of the BeanInfo class is the only relation between a JavaBean and its BeanInfo
class.

The BeanInfo interface provides the methods that enable you to specify and retrieve the information about a
JavaBean.
The following table lists some of the methods of BeanInfo interface:

INTRODUCTION TO JAVA BEANS

Prepared by SCCE_III-CSE Page 16

The BeanBox Menus
This section explains each item in the BeanBox File, Edit, and View menus.
File Menu
Save
Saves the Beans in the BeanBox, including each Bean’s size, position, and internal
state. The saved file can be loaded via File|Load.
SerializeComponent...
Saves the Beans in the BeanBox to a serialized (.ser) file. This file must be put in a
.jar file to be useable.
MakeApplet...
Generates an applet from the BeanBox contents.
Load...
Loads Saved files into the BeanBox. Will not load .ser files.
LoadJar...
Loads a Jar file’s contents into the ToolBox.
Print
Prints the BeanBox contents.
Clear
Removes the BeanBox contents.
Exit
Quits the BeanBox without offering to save.
Edit Menu
Cut
Removes the Bean selected in the BeanBox. The cut Bean is serialized, and can then
be pasted.
Copy
Copies the Bean selected in the BeanBox. The copied Bean is serialized, and can then
be pasted.
Paste
Drops the last cut or copied Bean into the BeanBox.
Report...
Generates an introspection report on the selected Bean.
Events
Lists the event−firing methods, grouped by interface.
Bind property...
Lists all the bound property methods of the selected Bean.
View Menu
Disable Design Mode
Removes the ToolBox and the Properties sheet from the screen. Eliminates all
14
beanBox design and test behavior (selected Bean, etc.), and makes the BeanBox
behave like an application.
Hide Invisible Beans
Hides invisible Beans.

