

Chapter 6 and 7

 How ADO.NET differs from ADO

ADO ADO.NET
ADO is based on COM (Component Object
Model) technology

ADO.NET is basically designed by .NET
framework for smooth interaction of
application and database

ADO works with connected data access
architecture .That means when we access the
data from data source such as viewing or
updating data.
ADO recordset is keeping connection with the
data source.

ADO.NET works with both connected and
disconnected data access
architecture.ADO.NET only holds the
connection open long enough to either to
retrieve the data or to make any requested
updates and immediately close the application.

ADO fits all connections to all types of data
sources into a single connection object.

ADO.NET can have separate objects that
represent connections to different data sources.

ADO recorsdet is a set of rows retrieved from a
data source

ADO.NET represents in-memory
representation of a database by using DataSet.

ADO recordset can hold data from one data
source at a time.

ADO.NET DataSets can hold data from
various data sources integrate the data and
write back to one or several data sources.

ADO uses OLEDB to access data ADO.NET uses XML and OLEDB as the
format for transmitting data to and from your
database and application.

ADO objects communicate in binary mode. ADO.NET uses XML for passing data

 Connected and disconnected data architecture:

The ADO.NET framework supports two models of data access architecture. These are:
1. Connected data access architecture
2. Disconnected data access architecture
In connected data access architecture, the application makes a connection to the datasource and
then interact with it through SQL requests using the same connection. In these cases, the
application stays connected to the database system even when it is not using any database
operations.
ADO.NET solves this problem by introducing a new component called Dataset. The Dataset is the
central component in the ADO.NET disconnected data access architecture.
Dataset is an in-memory data store that can hold multiple tables at the same time.Datasets only hold
data and do not interact with a data source.
In connected data access architecture, when we read data from a database by using a DataReader
object, an open connection must be maintained between an application and the data source.
Unlike the DataReader ,the Dataset is not connected directly to a data source through a connection
object when we populate it.
It is the DataAdapter that manages connections between data source and Dataset by filling the data
from data source to the DataSet and giving a disconnected behavior to the DataSet. The
DataAdapter acts as a bridge between the connected and disconnected objects.
By keeping connections open only for a minimum period of time,ADO.NET conserves system
resources and provides maximum security for databases.
Creating Connection:
Connection string is a normal string representation which contains database connection information
to establish the connection between database and the application.
The connection string includes parameters such as the name of the driver or provider, server name
& database name as well as security information such as username and password.
Data providers use a connection string containing a collection of parameters to establish the
connection with the database.

The .NET framework provides mainly three data providers:
1. Microsoft SQL server
2. OLEDB(Object Linking and Embedding DataBase)
3. ODBC(Open Database Connection)
Example:
 OleDbConnection con;
 con=new OleDbConnection ("provider=Microsoft.ACE.OLEDB.12.0;data
source=e:\\JVM\\database1.accdb");

 Managed data providers or ADO data providers

The .NET framework includes mainly three data providers for ADO.NET as follows:
1. Microsoft SQL server
2. OLEDB(Object Linking and Embedding DataBase)
3. ODBC(Open Database Connection)
Following links shows how these data providers making connection to the specified data sources:

The four objects from the .NET framework provide the functionality of data providers in
ADO.NET. They are:
i) Connection object
ii) Command object
iii) DataReader object
iv) DataAdapter object

DataAdapter Command DataReader

Connection

i) Connection object
The connection object is handling the part of physical communication between the application and
the data source.
The connection object connects to the specified database and open a connection between the
application and the database.
When the connection is established, SQL commands may be executed to retrieve or manipulate data
in the database. Once the database activity is over, connection should be closed and releases the
resources.

The following are commonly used connections in ADO.NET :
i)sqlConnection
ii) OleDbConnection
iii)OdBcConnection
Example:
 OleDbConnection con;
 con=new OleDbConnection ("provider=Microsoft.ACE.OLEDB.12.0;data
source=e:\\JVM\\database1.accdb");

ii) Command object
The command object in ADO.NET executes SQL statements and stored procedures against the data
source specified in the connection object. The command object requires an instance of a connection
object for executing the SQL statements. That is, for retrieving data or executing a SQL statement:
-Create a connection object
-Open a connection to the data source
-Assign the open connection to the connection property of the command object

Connection

Data source

When the command object return result set, a Datareader is used to retrieve the result set.

The command object has a property called CommandText which contains a string value that
represents the command that will be executed in the data source.
Following are some important built-in methods used in the command object to execute the SQL
statements.
-ExecuteNonQuery
-ExecuteReader
-ExecuteScalar
Example:
OleDbCommand cmd;
 cmd=new OleDbCommand ("insert into student values("+txtsrno.Text+",'"+txtsname.Text+ "', '"+
txtcourse.Text+"')",con);
 con.Open();
 int n=cmd.ExecuteNonQuery ();
 con.Close();
 if(n>0)
 {
 MessageBox.Show("Record inserted");
 loaddata();
 }

 else
 MessageBox.Show("insertion failed");

 }

Connection

Data source

Command

iii) DataReader object
DataReader object in ADO.NET is stream-based forward only, read only retrieval of query results
from the data source which do not update the data.
The DataReader cannot be created from code, they created only by calling the ExecuteReader
method of a command object.

s

There are to types of DataReader in ADO.NET:
1. sqlDataReader
2. OleDbDataReader
Example:
OleDbDataReader dr=cmd.ExecuteReader();
A connection object can contain only one DataReader at a time & the connection in the DataReader
remains open and cannot be used for any other purpose while the data is being accessed.
iv) DataAdapter object:
DataAdapter is a part of the ADO.NET data provider.
Dataadapter provides the communication between the Dataset and the data source. We can use the
Dataadapter in combination with the Dataset object. These two objects combine to enable both data
access and data manipulation capabilities.
The Dataadapter can perform select,update,insert and delete SQl operations in the data source.

DataReader

Command

Connection

Data source

The DataAdapter can perform select statement to fill a Dataset and use the other three SQL
commands(insert, update & delete) to transmit changes back to the database.
Following are the types of DataAdapter:
sqlDataAdapter
OdBcDataAdapter
OleDbDataAdapter
Example:
OleDbDataAdapter adapter;
adapter=new OleDbDataAdapter ("select * from student",con);
 ds=new DataSet();
 adapter.Fill(ds,"student");

 Advantages of ADO.NET

ADO.NET is a new object-oriented data handling technology which is very different from the
earlier ADO technology.ADO.NET provides greater ease of programming, higher performance,
improved scalability, less dependence on the specific nature of each data source and greater ability
to interact with other platforms because of XML.
1. Scalability
ADO.NET provides full support for disconnected data access. In this type of data access, most of
the time the data we are working with is not connected to a data source. This means that ADO.NET
uses database connection only for a short time. In many cases, the availability of less number of live
database connections reduces the scalability. The web applications built on ADO.NET are highly
scalable, as ADO.NET uses data connections only for a short duration of time.
Data source independence
The fundamental object that holds data in ADO.NET is an object of the class DataSet. This class is
present in the namespace System.Data. It is an in-memory copy of whatever part of the database we
have retrieved from a data source. This means that if we use a MS-SQL data source instead of a
MS-Access data source, we don’t have to learn anything new. The code which we write for
accessing a MS-SQL data source is much similar to the code we have to write for accessing a MS-
Access data source.
Interoperability
ADO.NET uses XML as its standard data transmission format. XML’s interoperability feature
enables .NET for cross platform, cross internet and flexible communication.

Performance:
ADO uses COM for the transmission of data between the client and the database server, a lot of
processing time was needed for converting data between the types recognized in the database and
the types that could be worked with COM .Only less processing time is needed for data conversions
in the case of ADO.NET, as data transmission occurs via XML.
Firewalls
Usually one point of access is set in local network. All traffic into or out of the local network is
checked at such a point. The hardware and software that sits between the Internet and the local
network, checking all the data that comes into the network or out, to make it is safe, is called a
firewall. Firewalls are mostly configured to reject COM packets, So ADO data cannot get through
them. On the other hand, XML data can easily pass through most firewalls.
 Developing ADO.NET based application:

 Refer experiment no. 13 in record book
 Insert,update and delete operations on table

 Refer experiment no. 14 in record book
 Filling the dataset

 Refer experiment no. 13 and 14 in record book

