TRANSCRIPTION

Transcription

- Prokaryotic transcription
- > The RNA polymerase
- > The origin & prokaryotic promoters
- > The initiation, elongation,& termination.
- Prokaryotic termination signals
- Prokaryotic transcription product
- Eukaryotic transcription
- Eukaryotic RNA polymerases
- Eukaryotic promoters

Enhancers & transcriptional elements The processes of initiation, elongation & termination **Eukaryotic termination signals RNA processing & modifications** The spliceosomes **Thalassemias & globin mRNA splicing** Modification to mRNA, tRNA

The Central Dogma

- DNA codes for RNA
- RNA codes for protein

Conclusion: With colinearity, the number of nucleotides in the gene is proportional to the number of amino acids in the protein.

Transcription: synthesis of <u>one RNA</u> <u>molecule</u> using one of the two DNA strands as a template by the enzyme <u>RNA Polymerase.</u>

DNA coding strand 5' - A G C C A G A G C C A C C C C C C A - 3'DNA template strand 3'-TACGGTCATCCGGTGAACAGT-5' mRNA 5'-AUG CCA GUA GGC CAC UUG UCA-3'

The RNA polymerase-catalyzed synthesis of RNA on a DNA template strand

Eukaryotic Transcription and Tanslation are separated by space and time

RNA Polymerase

The enzyme responsible for the RNA synthesis is <u>DNA-dependent RNA</u>
 <u>polymerase.</u>

The prokaryotic RNA polymerase is a multiple-subunit protein of ~480kD.

RNA Polymerase

 $(NMP)n + NTP \rightarrow (NMP)n+1 + PPi$

- Requires no primer for polymerization.
 Requires DNA for activity and is most
- active with a double-stranded DNA as template.
- 3. $5' \rightarrow 3'$ synthesis.
- 4. Require Mg²⁺ for RNA synthesis activity.
- 5. lacks $3' \rightarrow 5'$ exonuclease activity, and the error rate of nucleotides incorporation is 10^{-4} to 10^{-5} .
- 6. Usually are multisubunit enzyme.

Figure 13.9a Genetics: A Conceptual Approach, Fourth Edition © 2012 W. H. Freeman and Company

RNA Polymerase of *E. Coli*

The holoenzyme of RNA-polymerase in *E.coli*

consists of 5 different subunits: $\alpha_2 \beta \beta' \omega \sigma$

Subunit	MW	Function
α	36.5 KD	Determines the DNA to be transcribed
β	150 KD	Catalyzes polymerization
β′	155.5 KD	Binds & open DNA template
σ	70 KD	Recognizes the promoter for synthesis initiation
ω	11 KD	Subunit packing

Figure 13.11 Genetics: A Conceptual Approach, Fourth Edition © 2012 W. H. Freeman and Company

Eukaryotic Promoter Sequences

Promoter Enhancers Activators

Structure of bacterial prokaryotic promoter region

TATA-Box / Pribnow box

 This is a stretch of 6 nucleotides (5'-TATAAT-3') centered about 8-10 nucleotides to the left of the transcription start site.

-35 Sequence

 A second consensus nucleotide sequence (5'-TTGACA-3'), is centered about 35 bases to the left of the transcription start site.

Transcription process

1. Promoter binding

2. DNA unwinding

3. RNA chain initiation

4. RNA chain elongation

5. RNA chain termination

Transcription of Prokaryotes

- Initiation phase: RNA-polymerase recognizes the promoter and starts the transcription.
- <u>Elongation phase</u>: the RNA strand is continuously growing.
- <u>Termination phase</u>: RNA-polymerase stops synthesis and the nascent RNA is separated from the DNA template.

Initiation of Transcription at Promoters

Transcription is divided into three steps for both prokaryotes and eukaryotes. <u>Initiation, Elongation</u> and <u>Termination</u>.

The process of elongation is highly conserved between prokaryotes and eukaryotes, but initiation and termination are somewhat different.

Initiation

- RNA-polymerse recognizes the *TTGACA* region (-35 sequence), and slides to the *TATAAT* region (-10 sequence), then opens the DNA duplex.
- The unwound region is about **17** bp.

- The first nucleotide on RNA transcript is always purine triphosphate. GTP is more often than ATP.
- The **pppGpN-OH** structure remains on the RNA transcript until the RNA synthesis is completed.
- The three molecules form a transcription initiation complex.

RNA-pol ($\alpha_2\beta\beta'\sigma$) - DNA - pppGpN- OH 3'

• No primer is needed for RNA synthesis.

- The <u>σ subunit</u> falls off from the RNA-polymerase once the first
 - 3',5'-phosphodiester bond is formed.

• The core enzyme moves along the DNA template to enter the elongation phase.

Elongation

- The release of the σ subunit causes the conformational change of the core enzyme. The core enzyme slides on the DNA template toward the 3' end.
- Free NTPs are added sequentially to the 3' -OH of the nascent RNA strand.

 $(NMP)_n + NTP \longrightarrow (NMP)_{n+1} + PPi$

RNA strand substrate

elongated RNA strand

- RNA-polymerase, DNA segment of ~40nt and the nascent RNA form a complex called the <u>transcription</u> <u>bubble.</u>
- The 3' segment of the nascent RNA hybridizes with the DNA template, and its 5' end extends out the transcription bubble as the synthesis is processing.

Transcription bubble

Termination

 The RNA Polymerase stops moving on the DNA template. The RNA transcript falls off from the transcription complex.

• The <u>termination</u> occurs in either

 ρ -dependent or ρ -independent manner.

The ρ factor, a hexamer, is a ATPase and a Helicase.

ρ-independent termination

- The termination signal is a stretch of 30-40 nucleotides on the RNA transcript, consisting of many GC followed by a series of U.
- The sequence specificity of this nascent RNA transcript will form particular stem-loop structures to terminate the transcription.

Cleavage of this transcript produces 5S, 16S, and 23S rRNA molecules and a tRNA molecule.

Spacer regions are shown in yellow.

INHIBITORS OF TRANSCRIPTION

It binds to the β -subunit of the RNA Polymerase to block the initiation of transcription.

STREPTOLYDIGIN

It binds with the **β-subunit** of prokaryotic **RNA Polymerase** and thus inhibits the **Elongation phase of Transcription.**

The tricyclic ring system (phenoxazone) of Actinomycin D intercalates between adjacent G-C base pairs, and the cyclic polypeptide arms fill the nearby narrow groove and inhibits Elongation phase of Transcription.

<u>Cordycepin (3-deoxy Adenosine)</u>

It inhibits the **Elongation** phase of Transcription

EUKARYOTIC TRANSCRIPTION

Eukaryotic RNA polymerases

- **<u>RNA Polymerase-I:</u>** Transcribes / Synthesizes
- 28s rRNA
- 18s rRNA
- 5.8s rRNA
- **RNA Polymerase-II:** Transcribes
- m-RNA
- Some sn-RNA
- **RNA Polymerase-III: Transcribes**
- t-RNA
- 5s rRNA
- Some sn-RNA

RNA POLYMERASE-II

•RNA polymerase II is central to eukaryotic gene expression and has been studied extensively.

•RNA polymerase II is a multi subunit enzyme with <u>12 subunits</u>.

•RNA polymerase II requires an array of other proteins, called transcription factors (TF II) in order to form the active transcription complex.

Eukaryotic RNA polymerases

(14 subunits) (12 subunits)	(15 subunits) Rpc1 (C160)
	Rpc1 (C160)
Rpa1 (A190) Rbp1 (B220)	reper (CIOO)
Rpa2 (A135) Rbp2 (B150)	Rpc2 (C128)
Rpc5 (AC40) Rpb3 (B44.5)	Rpc5 (AC40)
Rpc9 (AC19) Rpb11 (B13.6)	Rpc9 (AC19)
Rbp6 (ABC23) Rbp6 (ABC23)	Rpb6 (ABC23)
Rpb5 (ABC27) Rpb5 (ABC27)	Rpb5 (ABC27)
Rpb8 (ABC14.4) Rpb8 (ABC14.4)	Rpb8 (ABC14.4)
Rbp10 (ABC10β) Rpb10 (ABC10β)	Rpb10 (ABC10β)
Rbp12 (ABC10α) Rpb12 (ABC10α)	Rpb12 (ABC10a)
Rpa9 (A12.2) Rpb9 (B12.6)	Rpc12 (C11)
Rpa8 (A14) ^c Rpb4 (B32)	
Rpa4 (A43) c Rpb7 (B16)	Rpc11 (C25)
+2 others ^d	+4 others ^d

<u>α-Amanitin</u> (Fungal toxin from Amanita phalloides) - cyclic octapeptide with unussual amino acids.

Dupor (3-lpase) Service: Although or Approach, Yoan (+1886) (-2012) N. A. Yoan and European

α-Amanitin

Inhibitor of eukaryotic RNA polymerase (mainly of type II)

Туре	Location	Cellular transcripts	Effects of α-amanitin
I	Nucleolus	18S, 5.8S, and 28S rRNA	Insensitive
II	Nucleoplasm	mRNA precursors and snRNA	Strongly inhibited
III	Nucleoplasm	tRNA and 5S rRNA	Inhibited by high concentrations

Eukaryotic Transcription

Promoters

- ✓ Much more complex than those found in bacteria.
- ✓ These are consensus sequences located at the upstream regions of Coding strand.
- ✓ Mutation of this region usually significantly lowers the rate of transcription.

(a) Euk	aryote		Tra	nscription start site (+1)
	GC Box	CAAT Box	TATA Box	
	000000	GGCCAATC	TATAAA	
	-110	-70	-30	

1) TATA box (Hogness Box)

Very similar to the prokaryotic TATA box, except the sequence is slightly different (TATAAA) and it is located in between -25 to -30.

2) CAAT box

Located in between -70 to -80. Always contains CCAAT.

3) <u>GC box</u> Usually has the sequence GGGCGG and is typically found at -110. Enhancers elements are the sequences located in a variety of regions of a gene both upstream and downstream of the transcription start site and even within the transcribed portions of some genes.

Enhancers increases the transcription rate by several folds.

Transcription factors

- RNA-pol II does not bind to the promoter sequences directly.
- RNA-pol II associates with six transcription factors.
- TFII A, TFII B, TFII D, TFII E, TFII F and TFII H

Proteins Required for Initiation of Transcription at the RNA Polymerase II (Pol II)

Transcription protein	Number of subunits	Subunit(s) M _r	Function(s)
Initiation			
Pol II	12	10,000-220,000	Catalyzes RNA synthesis
TBP (TATA-binding protein)	1	38,000	Specifically recognizes the TATA box
TFIIA	3	12,000, 19,000, 35,000	Stabilizes binding of TFIIB and TBP to the promoter
TFIIB	1	35,000	Binds to TBP; recruits Pol II-TFIIF complex
TFIIE	2	34,000, 57,000	Recruits TFIIH; has ATPase and helicase activities
TFIIF	2	30,000, 74,000	Binds tightly to Pol II; binds to TFIIB and prevents binding of Pol II to nonspecific DNA sequences
TFIIH	12	35,000–89,000	Unwinds DNA at promoter (helicase activity); phosphorylates Pol II (within the CTD); recruits nucleotide-excision repair proteins
Elongation [*]			
ELL [†]	1	80,000	
p-TEFb	2	43,000, 124,000	Phosphorylates Pol II (within the CTD)
SII (TFIIS)	1	38,000	
Elongin (SIII)	3	15,000, 18,000, 110,000	

Pre-initiation complex (PIC)

- **TBP of TFII D binds TATA–Box(-10 sequence)**
- TFII A and TFII B bind TFII D
- TFII F- RNA-pol complex binds TFII B
- TFILF and TFILE open the dsDNA (helicase and ATPase)
- TFII H: completion of PIC

Pre-initiation complex (PIC)

DNA + RNA Poly-II + TBP + Transcription Factors (TF)

Phosphorylation of RNA-Polymerase-II

- TF II H is of protein kinase activity to phosphorylate CTD of RNA pol-II.
 (CTD is the C-terminal domain of RNA pol-II)
- Only the RNA Polymerase can move toward the downstream, starting the elongation phase.
- Most of the Transcription Factors fall off from PIC during the elongation phase.

Termination

- When the RNA Polymerase transcribes the terminator region of the DNA, the polymerase releases the mRNA
- The termination sequence is <u>AATAAA</u> followed by <u>GT repeats</u>.

TFIIF remains associated with **RNA Pol-II** throughout elongation.

The activity of the RNA poly-II is greatly enhanced by proteins called <u>Elongation factors</u>

INHIBITORS OF EUKARYOTIC TRANSCRIPTION

Mitomycin

- Mitomycin- Intercalates with DNA strands
- Blocks transcription
- Used as anticancer drug

ADRIAMYCIN

Inhibits the Initiation phase by preventing the interaction of TF-IID with RNA-Poly-II and DNA complex.

CYCLOSPORIN -A

Immunosuppressant Drug inhibits Transcription in T-Cells.

DRB

(5,6-dichlorobenzimidazone-1-β-D-ribofuranoside)

Inhibits the Elongation phase of Transcription by selectively inhibiting RNA Poly-II.

Flavopyridol (Alvocidib)

Inhibits the Elongation phase of Transcription by selectively inhibiting RNA Poly-II.

Tagetitoxin

Inhibits tRNA synthesis by binding to RNA Poly-III.

Post-Transcriptional Modifications

 The nascent RNA, also known as <u>Primary transcript</u>, needs to be modified to become functional, mRNAs, tRNAs and rRNAs.

 These modification is critical to eukaryotic systems.

Posttranscriptional modifications to eukaryotic pre-mRNA

Modification Function	
Addition of 5'	cap Facilitates binding of ribosome to 5' end of mRNA, increases mRNA stability, enhances RNA splicing
3' cleavage and addition of poly(A) tail	d Increases stability of mRNA, facilitates binding of ribosome to mRNA
RNA splicing	Removes noncoding introns from pre-mRNA, facilitates export of mRNA to cytoplasm, allows for multiple proteins to be produced through alternative splicing
RNA editing	Alters nucleotide sequence of mRNA

- Primary transcripts of mRNA are called as heteronuclear RNA (hnRNA).
- hnRNA are larger than matured mRNA by many folds.
- Modification includes
 - Capping at the 5'- end
 - Tailing at the 3'- end
 - mRNA splicing
 - RNA editing

Post Transcriptional modifications of Pre-mRNA (or) hnRNA

 Introns are removed from the primary transcript in the nucleus, exons (coding sequences) are ligated to form the mRNA molecule.

pre-mRNA maturation

Pre-mRNA (primary transcript)

Capping at the 5'- end

m⁷GpppGp----

- The <u>5'- cap structure</u> is found on hnRNA too. ⇒ The capping process occurs in nuclei.
- The cap structure of mRNA will be recognized by the cap-binding protein required for translation.
- The capping occurs prior to the splicing.

Poly-A tailing at 3' - end

The matured mRNAs are much shorter than the DNA templates.

The structural genes are composed of <u>Coding</u> (Exons) and <u>Non-coding (Introns)</u>regions that are alternatively separated.

A~G no-coding region 1~7 coding region

Splicing of hnRNA / pre-mRNA

• Introns (or) intervening sequences are the RNA sequences which do not code for the proteins.

• Introns usually start with 5'-GU.

• Introns usually end with 3'-AG.

• RNA splicing involves the removal introns from pre-mRNA and is carried out by small nuclear complexes <u>Spliceosomes.</u>

Spliceosome

- The spliceosome is a large Protein-RNA complex in which splicing of pre-mRNAs occurs.
- The spliceosome is made up of specialized RNA and Protein complexes called <u>small</u> <u>nuclear RiboNucleoProteins</u> (snRNPs, often pronounced "snurps").
- Each snRNP contains RNAs with <u>100 to 200</u> <u>nucleotides long</u>, known as <u>small nuclear</u> <u>RNAs (snRNAs</u>).

- Five snRNAs (U1, U2, U4, U5, and U6) involved in splicing reactions are generally found in abundance in eukaryotic nuclei.
- Splice sites of Introns are recognized by snRNPs.

Self splicing Introns (Group – I Introns)

Self splicing Introns (Group – II Introns)

FIGURE 26-15 Splicing mechanism of group II introns. The chemistry is similar to that of group I intron splicing, except for the identity of the nucleophile in the first step and formation of a lariatlike intermediate, in which one branch is a 2',5'-phosphodiester bond.

Eukaryotic m-RNA after modifications

Splice site mutations

- Mutation at splice sites can lead to improper splicing and production of abberant proteins
- Eg: β thalassemia
- β-subunit of hemoglobin is not formed in sufficient amount.
- It results from point mutation in β -globin gene where the G-A mutation occurs.
- This creates a new splice acceptor site nineteen nucleotides upstream from the normal splice acceptor
- A faulty beta-globin protein is made, leading to severe anemia.

Location of Globin genes

Distribution of β -globin gene mutations associated with β -thalassemia.

Source: Lichtman MA, Kipps TJ, Seligsohn U, Kaushansky K, Prchal JT: Williams Hematology, 8th Edition: http://www.accessmedicine.com

Copyright @ The McGraw-Hill Companies, Inc. All rights reserved.

World distribution of β-thalassemia

<u>Clinical syndromes in</u> <u>β-THALASSEMIAS</u>

β-Thalassemia	Severe; requires blood
major	transfusions
β-Thalassemia	Severe but does not
intermedia	require regular blood
	transfusions
β-Thalassemia	Asymptomatic with mild
minor	or absent anemia; red cell
	abnormalities seen

Modification of tRNA

Endo- and exonucleases to generate ends of tRNA

Endonuclease <u>RNase P</u> cleaves to generate the <u>5' end</u>.

• Exonuclease <u>**RNase D</u></u> trims 3' to 5', leaving the mature 3' end**.</u>

At 3'-CCA region of tRNA an activated Amino acid will be attached during Protein Synthesis.

Base modifications

- 1. Methylation $A \rightarrow mA, G \rightarrow mG$
- 2. Reduction $U \rightarrow DHU$
- 3. Transversion $U \rightarrow \psi$
- 4. Deamination
 A→I

Modification of rRNA

- 45S Pre-rRNA transcript in nucleus is the precursor of 3 kinds of rRNAs.
- The matured rRNA will be assembled with ribosomal proteins to form ribosomes that are exported to cytosolic space.

