Syllabus

B.Sc. (Third Year) Analytical Chemistry

(V & VI Semester)

With Effect From 2018-2019
Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year
Analytical Chemistry
Course Structure, Semester-V (w.e.f.2018-19)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course Code</th>
<th>COURSE</th>
<th>Periods/Week</th>
<th>Total periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td>U-ANC-561</td>
<td>Modern Techniques Of Chemical Analysis-IX</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>X</td>
<td>U-ANC-562</td>
<td>Environmental & Food Analysis-X</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>VII</td>
<td>U-ANC-563</td>
<td>Analytical Chemistry Laboratory Course – VII</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>VIII</td>
<td>U-ANC-564</td>
<td>Analytical Chemistry Laboratory Course – VIII</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>200</td>
<td></td>
<td>08</td>
</tr>
</tbody>
</table>

Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year
Analytical Chemistry
Course Structure, Semester-VI (w.e.f.2018-19)

<table>
<thead>
<tr>
<th>Paper</th>
<th>Course Code</th>
<th>COURSE</th>
<th>Periods/Week</th>
<th>Total periods</th>
<th>Marks</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI</td>
<td>U-ANC-661</td>
<td>Electroanalytical Techniques & Chromatography-XI</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>XII</td>
<td>U-ANC-662</td>
<td>Applied Analytical Chemistry-XII</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>IX</td>
<td>U-ANC-663</td>
<td>Analytical Chemistry Laboratory Course – IX</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td>X</td>
<td>U-ANC-664</td>
<td>Analytical Chemistry Laboratory Course – X</td>
<td>03</td>
<td>45</td>
<td>50</td>
<td>02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>200</td>
<td></td>
<td>08</td>
</tr>
</tbody>
</table>
Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year ;Semester -V (w.e.f.2018-19)
Analytical Chemistry
Paper – IX
Modern Techniques of Chemical Analysis
Paper Code: U-ANC-561

Periods : 45 Per Semester Marks : 50
3 Period/week Credits : 02

Learning Objective:
1. To understand the Modern Techniques of chemical analysis.
2. Prepare the students for interpretation of spectral data for research.

Course Outcome:
With the knowledge of spectroscopic techniques students can explain principles and mechanisms involved and interpreted spectral data.

Unit – I Infrared Spectroscopy : 12 Periods

Unit – II 1H NMR Spectroscopy : 13 Periods
Theory of 1H NMR Spectroscopy, Instrumentation, Experimental technique, NMR spectra, Number of signals- equivalent and nonequivalent protons, Chemical Shift, Measurement of Chemical Shift, Factors affecting chemical shift, Spin-spin coupling, Interpretation of 1H NMR spectra in structure determination and identification.
Unit – III Mass Spectrometry :
Theory, Instrumentation, components of mass spectrometer, Recording of mass spectrum, Resolution of mass spectrometer, Types of ions produced in a mass spectrometer, Applications of mass spectrometry.

Unit – IV Fluorescence Spectroscopy :
Theory, Relation between fluorescence intensity and concentration, Single and Double beam filter fluorometers, Applications.
Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year; Semester-V (w.e.f.2018-19)
Analytical Chemistry
Paper – X
Environmental and Food Analysis
Paper Code- U-ANC-562

Periods : 45/Semester Marks : 50
03Period/week Credits : 02

Learning Objective:

1. Make the students aware of environmental pollution & study the level of pollutants
2. Learn the analysis of food.

Course Outcome:

Student get acquainted with issues regarding the environmental pollution and procedures for analysis of pollutants and food samples.

Unit – I Environmental Analysis-I (Air and water) :

12 Periods

Analysis of Air : Composition of natural atmospheric air, pollution, pollutants in air, causes of pollution, sampling of air, Determination of i) particulate matter suspended and settled ii) Sulphur dioxide iii) Nitrogen dioxide iv) Carbon mono and dioxide as pollutants.

Unit – II Environmental Analysis-II (Industrial Effluent)

Analysis of Industrial Effluent:
5 Periods

Definition of industrial effluent, Estimation of toxic metals like Hg & Zn in industrial effluent.

Unit – III Environmental Analysis-III (Analysis of Soil):
12 Periods

Methods of soil sampling, Determination of: (i) Bulk density (ii) specific gravity (iii) water holding capacity (iv) moisture content (v) Loss on ignition (vi) soil pH. Chemical Analysis of Soil: Determination of (i) Total nitrogen, (ii) Nitrate Nitrogen (iii) organic matter. Determination of potassium and sodium.

Unit – IV Analysis of Food and Food Products:
16 Periods

Composition and Analysis of following:

i) Milk: Determination of specific gravity, Total solids, Fat, Protein, Lactose and Acidity.

Wheat flour: Determination of moisture, ash, fat, protein, fiber, acidity, pH & starch.

Determination of moisture, total fat, ash, chloride, Nitrogen and total phosphorus.

iii) Honey: Determination of total solids, moisture, ash, free acid pH and glucose.

Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year; Semester – V (w.e.f.2018-19)
Analytical Chemistry Laboratory Course – VII
Paper Code-U-ANC-563

<table>
<thead>
<tr>
<th>Periods : 45/Semester</th>
<th>Marks : 50</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Period/week</td>
<td>Credits : 02</td>
</tr>
</tbody>
</table>

Learning Objective:
Develop experimental skills for the environmental & food analysis.

Course Outcome:
Student can analyse environmental and food samples practically.

Note: Out of 21 experiments, at least 08 experiments should be completed.

A. Environmental Analysis:
2. Determination of dissolved oxygen in water by Winkler’s method.
3. Determination of nitrate nitrogen/ nitrite nitrogen/ phosphate in a sample of water by colorimetry.
4. Determination of total hardness, calcium hardness and magnesium hardness of a water sample.
5. Determination of chemical oxygen demand (COD) of a waste water sample.
7. Determination of Silica in soil.
9. Determination of soil pH.
10. Estimation of micro nutrients Zinc/Copper/Manganese in a soil sample.
B. Food & Food product analysis:

15. Determination of ascorbic acid in fruit juices/ citrus fruits.
16. Determination of total acidity, fixed acidity and volatile acidity in pickeles / titratable acidity in fruits/ fruits juices.
17. Determination of sodium bicarbonate in carbonated drinks/ soda water/ soft drinks and determination of caffeine in cola drinks/ carbonated beverages.
18. Determination of iron content in foods by spectrophotometry
19. Isolation of piperine from black pepper and its determination as crude piperine.
20. Determination of Carbon dioxide in carbonated beverages.

Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year; Semester-V (w.e.f. 2018-19)
Analytical Chemistry Laboratory Course – VIII
Paper Code-U-ANC-564

Total Period: 45
3 Period/week
Marks: 50
Credits: 2

Learning Objective:
Acquire practical knowledge of chromatographic separation, analysis of water & metals.

Course Course:
Students can handle chromatographic techniques and analyse water and metal samples.

Note: Out of 13 experiments, at least 08 experiments should be completed.

1. Chromatographic Techniques:
 1. Paper/Thin layer chromatography separation of metals/ amino acids / Sugars from a mixture.
 2. Chromatographic separation of plant leaf pigments.
 3. Separation of inorganic ions by TLC.

2. Analysis of water:
 4. Potentiometric determination of fluoride in drinking water/ river water using Fluoride-ion selective electrode.
 5. Determination of available chlorine in bleaching powder volumetrically using an external Indicator.
 6. Microscale quantitative Analysis of Hard water samples using an indirect potassium permanganate Redox titration.

3. Elemental Analysis:
 7. Determination of concentration of ferrous ion by potentiometric titration.
 8. Determination of antimony by titration with iodine.
 9. Iodometric determination of copper.
10. Estimation of ferrous and ferric iron in a mixture.
11. Determination of copper and nickel in a mixture.

4. Spectroscopic Analysis:
 12. Determination of functional groups of given compounds by IR spectrophotometry.
Learning Objective:
1. Introduce the students to electroanalytical techniques.
2. Understand new chromatographic techniques in analysis

Course Outcome:
Thorough knowledge regarding electroanalytical techniques and chromatographic techniques are incorporated in students

Unit - I Electroanalytical Techniques-1 :
12 Periods
1.1 Conductometry: Conductance, specific conductance, Equivalent conductance, molecular conductance, Effect of dilution, measurement of conductance- conductivity cell, wheat stone bridge apparatus. Conductometric Titrations, apparatus for conductometric titrations, Types of conductometric titrations - Acid base, Precipitation and Redox titrations.

1.2 Potentiometry: Electrode Potential, Standard electrode potential, Nernst equation, EMF of an electrolytic cell, reference, indicator and ion selective electrodes. Theory of potentiometric titrations, Types of potentiometric titrations - Acid base, Redox and precipitation titrations.

1.3 Karl Fischer method.

Unit - II Electroanalytical Techniques-2 :
13 Periods
2.1 Polarography:
2.2 Amperometry: Theory of amperometric titrations, Typical titration curves, Apparatus with rotating Platinum microelectrode and applications.

Unit - III Chromatographic Techniques -2 :
Ion Exchange Chromatography: Principle, ion exchange resins & their types- cation exchange resins, anion exchange resins, ion exchange reactions, ion exchange equilibria, properties of ion exchange resins, ion exchange capacity, Techniques- Batch & Column method and applications.

Unit – IV Chromatographic Techniques–3 & Hyphanated Techniques :
 a) Size Exclusion chromatography : Principle, Gel-materials, Technique, instrumentation and applications.
 b) Super Critical Fluid Chromatography: Principle, instrumentation and applications
 c) Hyphanated Techniques: GC-MS, LC-MS

Learning Objective:
1. Understand pharmaceutical, Clinical & cosmetic Analysis.
2. Learn separation by solvent extraction & fuel analysis techniques.

Course Outcome:
Students became familiar with pharmaceutical, clinical, cosmetic and fuel analysis as well as with solvent extraction techniques.

Unit – I Pharmaceutical Analysis:
Definition, classification of drugs on the basis of their therapeutic action and structure. Definition and analysis of followings classes of drugs with one specific example of each: (i) Antiseptics and Disinfectants (ii) Analgesics (iii) Antipyretics (iv) Antibiotics

Unit – II Clinical & Cosmetic Analysis:
2.1 Clinical Analysis: Composition of Blood, Non cellular/ plasma and cellular components, Normal range of concentration of important constituents, collection and preservation of blood for plasma, serum, glucose and CO₂ analysis. Estimation of sodium, potassium, calcium, bicarbonate, blood glucose, and blood urea.
2.2 Analysis of Cosmetics: Introduction to cosmetics, definition, General characteristics, composition and analysis in outline of the following (i) Face Powders (ii) Hair dyes
Unit – III Separation by Solvent Extraction : 10 Periods
Theoretical Principles – Nernst distribution law, Distribution constant, Distribution ratio,
Efficiency of extraction, Percentage extraction, Amount of solute extracted and left unextracted,
Sequence of extraction process, Extraction equilibria, Factors favouring extraction, Techniques
of extraction, Analytical applications.

Unit – IV Analysis of Fuels : 12 Periods
Definition and classification of fuels, solid fuels, liquid fuels and gaseous fuels. Calorific value of
fuels, Gross and Net calorific value, Determination of calorific value by Bomb Calorimeter,
Proximate analysis of coal- moisture, volatile matter, Ash, fixed carbon & their significance.
Flash, fire and aniline points of liquid fuels, their determination and significance.

Rajarshi Shahu Mahavidyalaya, Latur
Faculty of Science
B.Sc. III (Third) Year; Semester –VI (w.e.f.2018-19)
Analytical Chemistry Laboratory Course – IX
Paper Code-U-ANC-663

Periods : 45 Per Semester ,
Marks : 50
3 Period/week
Credits : 02

Learning Objective:
Develop instrumental skills and Chromatographic techniques handling skill

Course Outcome:
Students acquired skill of handling instruments and chromatographic techniques

Note : Out of 13 experiments, at least 08 experiments should be completed.

A. Conductometry:
1. Assay of aspirin by conductometry.
2. Determination of velocity constant of hydrolysis of ethyl acetate by base (NaOH) conductometrically.
3. Determination of strength of acetic acid in commercial sample of vinegar by conductometry.

B. Potentiometry:
4. Determination of iron in pharmaceutical preparation by potentiometry.
5. Determination of percentage purity of commercial washing soda by potentiometry.

C. Autotitration:
7. Determination of moisture content in the sample by Karl-Fischer method.

D. Chromatography:
8. Determination of Capacity of cation exchange resin.
10. Determination of magnesium and Zinc in a mixture/ Zinc in pharmaceutical preparations by ion exchange separation and complexometric titration.
11. Separation of cadmium and zinc on an anion exchanger and their subsequent determination by EDTA titration.
12. Separation of cobalt and nickel on an anion exchange resin and their subsequent determination by direct back EDTA titration.
13. Estimation of sodium by ion exchange method
Learning Objective:
Develop experimental skills in pharmaceutical clinical, cosmetic & fuel analysis.

Course Outcome:
Student acquired experimental skill for pharmaceutical, clinical, cosmetic and fuel analysis.

Note: Out of 14 experiments, at least 08 experiments should be completed.

A. Pharmaceutical Analysis:
1. Determination of milk of magnesia in given antacid sample.
2. Assay of aspirin (acetyl salicylic acid).
3. Assay of Isoniazide
4. Analysis of Sulpha drugs i.e. Sulphadiazine, Sulphadimethoxine, Sulphathiazole/Sulphaxole, Sulphaacetamide sodium.

B. Clinical analysis & Cosmetic Analysis:
5. Estimation of blood glucose.
7. Estimation of blood urea.
8. Determination of zinc in talcum powder sample.

C. Solvent Extraction
10. Ultraviolet spectrophotometric determination of Asprin, Phenacetin, and caffeine in APC tablets using solvent extraction.
11. Determination of ether extractives and caffeine in tea/coffee samples.
12. Spectrophotometric estimation of lead on leaves using solvent extraction.

D. Fuel Analysis:
13. Determination of moisture in coal

Recommended Books for Theory Papers IX, X, XI & XII and Laboratory Courses – VII, VIII, IX & X (w.e.f.2018-19):

5. Text Book of Biochemistry : West and Tood/ Lehninger.
8. Quantitative Analysis : Cumming and Key
and Co.
19. A Textbook of Environmental Chemistry and Pollution Control: S. S. Dara
23. Chemical Analysis of Food and Food Products: M. B. Jacob
24. Food Analysis – Lab Experiments: Melon and Pomerazu
27. Quantitative Pharmaceutical Chemistry: Jenkins and others
29. Air Pollution: Henry C. Perkins
30. Chemical Analysis of Water: Dickinson
32. Commercial Method of Analysis: Foster D Snell and Frank M. Biffen
33. Quantitative Analysis: Day & Underwood
34. Instrumental Methods Chemical Analysis: Willard, Dean and Merit
35. Instrumental Methods of Analysis: Chatwal and Anand
36. Spectrometric Identification of Organic Compounds: Silverstein, Bessler and others
38. Spectroscopy: William Kemp
39. Biochemical Laboratory Technique: Chey kin
40. ISI Standard methods of Water and Air analysis: Blackie, USA
42. Analytical Chemistry - H, Kaur, Pragati Prakashan, Meerut (for Fuel & Soil Analysis)
43. Analytical Chemistry - Dr. Alka K. Gupta, Pragati Prakashan, Meerut (for Fuel & Soil Analysis)
44. Analytical Chemistry - Gary D. Christian Wiley students Old & 6th edition (for automation)
45. Principles and practice of Analytical Chemistry – F. W. Fi Field & D. Kealey (for automation)

Prepared By Chairman BoS in Analytical Chemistry (UG):
Dr. S.D. Salunke
Vice Principal and
Associate Professor in Analytical Chemistry
Rajarshi Shahu Mahavidyalaya, Latur.
LATUR – 413512 E-mail ID: salunke_shridhar@yahoo.co.in
Contact No.: 9011843285.

From:
Dr. S.D. Salunke,
Associate Professor in Analytical Chemistry and
Principal,
Rajarshi Shahu Mahavidyalaya, Latur

e-mail: salunke_shridhar@yahoo.co.in

Date: 13.05.2017
To,

The Principal,
Rajarshi Shahu Mahavidyalaya,
Latur – 413 512

Sub: New syllabus of B.Sc III, Analytical chemistry (Semester V & VI) to be implemented From the academic Year 2017-18 under autonomous status.

Dear Sir,

As per your requirement, I am submitting herewith the new syllabi of B.Sc. III Analytical Chemistry, two theory papers each of semester V & VI (P – IX, X, XI & XII) and four practical papers (Laboratory Course – VII, VIII, IX & X) under autonomous status as an attachment to this e-mail.

Accept the same for implementation from the academic year 2017-18.

Thanking you.

Yours faithfully,

(Dr. S. D. Salunke)

Note: Total Papers = 1 + 16 = 17
