

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur

Academic Year - 2023-24

Syllabus Under CBCS

Post Graduate Program in

Computer Science

Department of Computer Science

M. Sc. (Computer Science) SY

Syllabi Approved by the Board of Studies in Computer Science with effect from June, 2023

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2023 M. Sc. (Computer Science) Second Year

Semester III

	Course Code Course Title	Lectures		Marks			
		Course Title	Per week	Total	C.C.E.	E.S.E	Credits
	P-WPD-328	Web Development using PHP	4	60	40	60	4
	P-LIA-329	LINUX Administration	4	60	40	60	4
	P-SOE-330	Software Engineering	4	60	40	60	4
		Choose any one fr	om the	following	Elective Co	ourses	
	P-DIP-331-I	Digital Image Processing	4	60	40	60	4
ter - I	P-COG-331- II	Computer Graphics	4	60	40	60	4
Semester - II	P-ARI-331- III	Artificial Intelligence	4	60	40	60	4
Š	Practical Courses						
	P-LAC-332	Lab-Course V	3	30	20	30	2
	P-LAC-333	Lab-Course VI	3	30	20	30	2
	P-LAC-334	Lab-Course VII	3	30	20	30	2
	P-LAC-335	Lab-Course VIII	2	30	20	30	2
	P-SEM-383	Seminar - III			25		1
		Total			62	25	25

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science Curriculum Structure with effect from June, 2023 M. Sc. (Computer Science) Second Year

Semester IV

	Course Code		Lec	tures	Marks		
		Course Title	Per week	Total	C.C.E.	E.S.E	Credits
	P-BIA-426	Big Data Analysis	4	60	40	60	4
	P-AJP-427	Advanced Java Programming	4	60	40	60	4
	P-CLC-428	Cloud Computing	4	60	40	60	4
		Choose any one fr	om the	following	Elective Co	ourses	
·- IN	P-INS-429-I	Information Security	4	60	40	60	4
Semester - IV	P-SOC-429-II	Soft Computing	4	60	40	60	4
Sem	P-PAR- 429- III	Pattern Recognition	4	60	40	60	4
	Practical Courses						
	P-LAC-430	Lab-Course VIII	3	30	20	30	2
	P-LAC-431	Lab-Course IX	3	30	20	30	2
		Project	3	30	40	60	4
	P-SEM-477	Seminar – IV			25		1
		Total			62	25	25

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Web Development Using PHP Course Code: P-WPD-328 Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To train the students in creating dynamic web pages using PHP
- Inculcate Core-PHP, Server-Side Scripting Language
- Demonstrate PHP-Database handling.
- > One PHP frame work for effective design of web application.
- > To make the students create web pages using Java-Script, CSS, MVC.
- > To familiarize students with AJAX and Bootstrap.

- > Develop web pages using HTML, CSS and JavaScript
- > Build web applications using PHP and MySQL database
- > Discuss the integration of PHP with AJAX & BootStrap
- Create and deploy a portable web-based system
- Test and debug object-oriented PHP scripts

Unit No.	Contents	No. of Lect.
UNIT I:	Introduction to web techniques	10
Introduction to	Introduction to PHP, what does PHP do? History of PHP,	
PHP, Function	Installing PHP	
and Arrays	Function and String: Defining and calling a function, Default parameters, Variable parameters, Missing parameters, Variable function, Anonymous function, Types of strings in PHP, printing functions, Encoding. Arrays: Indexed Vs Associative arrays, identifying elements of	
	an array, storing data in arrays, Multidimensional arrays,	
	extracting multiple values, Converting between arrays and	
	variables, Traversing Arrays, Sorting.	
UNIT II: Working with Data, Objects & BootStrap	 Working with Data: FORM element, INPUT elements, validating user input, passing variables between pages, passing variables through a GET, passing variables through a POST, Passing variables through REQUEST, MVC Architecture. Introduction to Object Oriented Programming: Classes, Objects, Serialization, Inheritance Interfaces, Encapsulation. Introduction to Bootstrap: Where to get Bootstrap 4? BootStrap containers, Grids, Tables, Images, Alerts, dropdown, Accoordian, Tabs&Pills, Navigation Bar, Buttons, ProgressBar, Pagination. 	15

Unit No.	Contents	No. of Lect.
UNIT III: Web Techniques and MYSQL	 Cookies & Sessions Anatomy of a cookie, setting a cookie with PHP, deleting a cookie, creating session cookie, starting a session, working with session variables, destroying a session, Encoding and decoding session variables. Manipulating MySQL data with PHP- Inserting, updating, deleting records. Building a member registration application, Creating a members area, creating a member manager application. PHP framework and Handling email with php Introduction to PHP framework, Features, Applications, One example like CodeIgniter Sending email with php, Email id validation and verification. 	20
UNIT IV: Web Designing Technologies and Ajax	Overview of JavaScript, Basic Syntax (JS datatypes, JS variables), Primitives, Operations and Expressions, Screen Output and keyboard input (Verification and Validation), JS Control statements, JS Functions, JS popup boxes (alert, confirm, prompt), Introduction to CSS. Introduction to AJAX Introduction of AJAX, Simple AJAX Example, Performing simple AJAX validation.	15

- 1. Programming PHP, Rasmus Lerdrof and Kevin Tatroe, O'Reilly publication
- 2. Beginning PHP 5.3, Matt Doyle, Wrox Publication
- 3. AJAX Black Book, Kogent Solution

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Linux Administration Course Code: P-LIA-329 Total Lectures: 60 Credits: 4 Max. Marks: 100

Learning Objectives:

- > To familiarize students with the Linux environment
- > To enable the students work with various basic LINUX commands
- > To learn the fundamentals of shell scripting/programming
- > To familiarize students with basic Linux administration

- Work confidently in Unix/Linux environment.
- Make use of various commands in LINUX to control various resources like file, network, disk etc
- > Develop Shell Script using Shell commands.
- Master the basics of Linux administration.

Unit No.	Contents	No. of Lect.
UNIT I Introduction to Linux and Linux Files and Directories	Introducing Linux, Installing Red Hat Linux, Features of Linux, Basic Architecture of Linux system, features of Kernel and Shell. Boot block, Superblock and Data blocks, How Unix/Linux kernel access files. The shell Scripts, Essential Linux commands Listing, Displaying, and Printing Files, Displaying Files: cat, less and more, Printing Files :lpr, Ipq, and Iprm Managing Directories: mkdir, rmdir, Is, cd and pwd, File and Directory Operations: find, cp, mv, rm ln Archiving and compressing files, Filters and pipes: head, tail, wc, pr, cut, paste, sort, uniq, grep, egrep, fgrep, tee	15
UNIT II Managing Users and File system		15

Unit No.	Contents	No. of Lect.	
UNIT III Backing	Choosing a Backup Strategy, choosing a Backup Hardware and	15	
Up, Recovery	Media, Using Backup Software, Copying Files, deleting Files,		
and Printing	System Recovery		
with Linux	Overview of Linux Printing, Configuring and Managing Print		
	Services, Creating and Configuring Local Printers, Creating		
	Network Printers, Console Print Control, Using the Common		
	UNIX Printing System (CUPS) GUI		
UNIT IV Network	Networking with TCP/IP	15	
Connectivity and	Network Organization		
Managing DNS	Hardware Devices for Networking		
	Using Network Configuration Tools		
	Dynamic Host Configuration Protocol		
	Using the Network File System		
	Managing DNS, Configuring DNS,		
	Essential DNS concept		
	Overview of DNS Tools, Configuring Name servers with BIND,		
	Providing DNS for Real Domain.		

- 1. RedHatLinux7.2–By Bill Ball and Hoyt Duff.
- 2. Enterprise Linux & Fedora Edition–The Complete Reference-By Richard L. Petersen
- 3. Linux-The Complete Reference-Richard Petersen
- 4. Linux Administration Handbook–Evi. Nemeth Prentice Hall

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Software Engineering Course Code: P-SOE-330 Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- To impart the knowledge on the Software Engineering Principles, Applications and Process models.
- > To help the students to learn the Requirement Engineering Process.
- > To create awareness on the basic activities of software project management.
- > To provide the idea of decomposing the given problem into Analysis, Design, implementation, Testing and Maintenance phases.
- To gain the knowledge of how Analysis, Design, Implementation, Testing and Maintenance processes are conducted in a software project.

- Demonstrate an understanding of the key facts, concepts, principles and theories of software engineering
- Analyze the effective software engineering process, based on knowledge of widely used development lifecycle models.
- > choose appropriate process model depending on the user requirements.
- perform various life cycle activities like Analysis, Design, Implementation, Testing and Maintenance.
- > apply the knowledge, techniques, and skills in the development of a software product.

Unit No	Contents	No of
		Lectures
Unit 1:	Software, Software Characteristics, Software Components,	15
Introduction and	Software Applications, Software: A Crisis on The Horizon, The	
Software Metrics	Software Process, Software Process Models: The Linear	
	Sequential Model, The Prototyping Model, Evolutionary	
	Software Process Models: The Incremental Model, The Spiral	
	Model, Software Project Management: People, The Problem,	
	The Process Measures, Metrics, Indicators, Software	
	Measurement: Size -Oriented Metrics, Function-Oriented	
	Metrics.	
Unit 2: Software	Project Planning Objectives, Software Scope, Resources,	15
Project Planning	Software Project Estimation, Empirical Estimation Models:	
and Risk	The Structure of Estimation Models, COCOMO Model, The	
Management	Software Equation, Software Risks, Risk Identification:	
	Product Size, Business Impact, Customer Characteristics,	
	Process Definition, Development Environment, Technology to	
	Be Built, Staff Size and Experience, RMMM Plan, Software	
	Scheduling: Timeline Chart, Tracking the Schedule, The Project	
	Plan.	

Unit No.	Contents	No. of Lect.
Unit 3: Software	Quality Concepts: Quality, Quality Control, Quality Assurance,	15
Quality	Cost of Quality, Formal Technical Reviews: The Review	
Assurance and	Meeting, Review Reporting and Record Keeping, Review	
Configuration	Guidelines, SQA Plan, The Iso 9000 Quality Standards,	
Management	Software Configuration Management: Baseline, Software	
	Configuration Items, The Design Process.	
Unit 4: Types	White box testing, Black box testing, Levels of testing, Unit	15
and Levels of	testing, Integration testing, Testing web application,	
Testing	Acceptance testing, GUI testing, Regression testing, Manual testing, Automated testing.	

Reference Books:

- 1. Software Engineering A Practitioner's Approach Fourth Edition, Roger S. Pressman, Ph.D.
- 2. Software testing Principles & Practices, Naresh Chauhan, Oxford University Press.
- 3.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Digital Image Processing Course Code: P-DIP-331-I Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To familiarize students with digital image fundamentals.
- > To discuss the properties of digital image.
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- > To learn image degradation and restoration techniques.
- > To study the Morphological Image Processing and Image Segmentation

- > After completion of this course, students should be able to:
- Know and understand the fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.
- > Operate on images using the image enhancement and Filtering Methods.
- > Understand the image degradation and restoration
- > perform operations on color images
- > apply the morphological operation and segmentation techniques on images.
- Perform color image processing Operations

Unit No	Contents	No of
		Lectures
Unit- I	What is digital image processing? Applications of digital image	15
Introduction to	processing, fundamental steps in digital image processing,	
Image	Components of digital image processing, Elements of visual	
Processing and	perception, Light and Electromagnetic Spectrum,	
M Function	image sensing and acquisition devices, a simple image	
Programming	formation model, image sampling and quantization, neighbors	
	of pixels, distance. Representing digital images.	
	Digital Image Representation: Coordinate Conventions,	
	Images as Matrices, Reading Images, Displaying Images,	
	Writing Images, Data Classes, Image Types, Intensity Images,	
	Binary Images, A Note on Terminology, Converting between	
	Data Classes and Image Types, converting between Data	
	Classes, Converting between Image classes and Types,	
	Array Indexing: Vector Indexing, Matrix Indexing, Selecting	
	Array Dimensions, Some Important Standard Arrays,	
	Introduction to M Function Programming: M-Files, Operators,	
	Flow Control, Code Optimization, Interactive I/O.	

Unit No	Contents	No of
one No	Contents	
Unit- II Intensity Transformations and Filtering	Intensity Transformation Functions: Function imadjust, Logarithmic and Contrast- Stretching Transformations, Histogram Processing and Function Plotting: Generating and Plotting Image Histograms, Histogram Equalization, Histogram Matching (Specification), Spatial Filtering, Linear Spatial Filtering, Nonlinear Spatial Filtering, Image Processing Toolbox standard Spatial Filters, Frequency Domain Processing: The 2-D Discrete Fourier Transform, Computing and Visualizing the 2-D DFT in MATLAB, Filtering in the Frequency Domain, Basic Steps in DFT Filtering. Obtaining Frequency Domain Filters from Spatial Filters, Generating Filters Directly in the Frequency Domain, Sharpening Frequency Domain Filters.	Lectures 15
Unit - III Image Restoration and Color Image Processing	A Model of the Image Degradation/Restoration Process, Noise Models, Geometric Transformations and Image Registration: Geometric Spatial Transformations, Applying Spatial Transformations to Images, Image Registration, Color Image Representation in MATLAB: RGB Images, Indexed Images, IPT Functions for Manipulating RGB and Indexed Images, Converting to Other Color Spaces: NTSC Color Space, The YCbCr Color Space, The HSV Color Space, The CMY and CMYK Color Spaces, The HSI Color Space, The Basics of Color Image Processing, color Transformations, Spatial Filtering of Color Images and working directly in RGB vector space.	15
UNIT IV Morphological Image Processing and Image Segmentation	Erosion and Dilation, Opening and Closing, The Hit or Miss Transformations, Basic Morphological algorithms, Edge Detection, Thresholding, Region based Segmentation, Segmentation using Morphological Watersheds and the use of motion in Segmentation.	15

Reference Books:

- 1. R. C. Gonsales R. E. Woods, Digital Image Processing, Second Edition, Pearson Education
- 2. R.C. Gonsales R. E. Woods, Digital Image Processing using MATLAB, Pearson Education
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Prentice Hall.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Computer Graphics Course Code: P-COG-331-II Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > To discuss the basic principles of computer graphics prim
- > To learn various computer graphics hardware and display technologies.
- > To learn the fundamentals of 2D and 3D graphics pipeline, 2D and 3D transformations.
- > To learn the line drawing and curve generation algorithms.
- > To get familiar with fundamental color models.

Course Outcomes:

After learning the course, the students will be able to:

- > Understand the various computer graphics hardware and display technologies.
- > Understand various 2D and 3D objects transformation techniques.
- > Understand line drawing and curve generation.
- > Understand color models

Unit No	Contents	No of
		Lectures
Unit I	A survey of computer graphics: Computer Aided Design,	15
Introduction to	Presentation graphics, Computer Art, Entertainment,	
Computer	Education and training, Visualization, Image processing,	
Graphics	Graphical User Interfaces.	
	Overview of graphics Systems: Video display devices, Raster	
	Scan Displays, Random Scan Displays, Input devices, Hard-	
	copy devices, Graphics software.	
	Output Primitives: Points and Lines, Line drawing Algorithms	
	(DDA and Brasenham's Line algorithm), Mid-point circle	
	algorithm, Ellipse generating algorithms, Filled-Area	
	Primitives. Attributes of Output Primitives: Line Attributes,	
	Curve Attributes, Color and Grayscale Levels, Area-Fill	
	Attributes and	
	Character Attributes, Bundled attributes and anti-aliasing.	
Unit II	Two-dimensional geometric Transformation: Basic	15
Transformation	Transformation (Translation, Rotation, Scaling),	
and Clipping	Matrix representation and Homogenous Coordination,	
	Composite Transformation Reflection Shear, Transformation	
	between coordinate systems, two-dimensional viewing:	
	The Viewing Pipeline, viewing coordinate reference frame,	
	window to view port coordinate transformation, Line	
	Clipping: (Cohen-Sutherland & Liang-Barsky algorithm) and	
	Polygon Clipping (Sutherland-Hodgeman Algorithm).	

Unit No.	Contents	No. of Lect.
Unit III Three-	Three-dimensional object Representation: Polygon Surfaces,	15
Dimensional	Quadratic Surfaces, Spline Representation, Bezier Curves and	
Graphics	Surfaces, B-Spline Curves and Surfaces, Fractal Geometry	
	Methods: Fractal Generation Procedures, Classification of	
	Fractals, Fractal Dimension, Geometric Construction of	
	Deterministic Self Similar Fractals, Self-Squaring fractals.	
	Three Dimensional Geometric and Modeling Transformations:	
	Translation, Rotation, Scaling, Reflections, Shears, Composite	
	Transformations, Modeling and coordinate Transformations.	
	Three-dimensional Viewing: Viewing Pipeline, Viewing	
	Coordinates, Projections (Parallel and Perspective) Clipping.	
Unit IV	Visible Surface Detection Methods: Classification of	15
Illumination	Visible-Surface Detection Algorithms, Back-Face	
and Color	Detection, Depth-Buffer Method, A-Buffer Method, Scan line	
Models	and Depth Sorting, Illumination Models and Surface-	
	Rendering Methods: BasicIllumination Models, Displaying	
	Light Intensities, HalftonePatterns and Dithering	
	Techniques,	
	Polygon- Rendering Methods (Ground Shading, Phong	
	Shading),Light sources – basic illumination models–half tone	
	patterns and dithering techniques.	
	Intuitive colour concepts-RGB colour model-YIQ colour	
	model-CMY colour model-HSV colour model-HLS colour	
	model; Colour selection.	

Reference Books:

- 1. Computer Graphics (Principles and Practice) by Foley, vanDam, Feiner and Hughes, Addison Wesley (Indian Edition).
- 2. Computer Graphics by D Hearn and PM Baker, Prentice Hall of India (Indian Edition).
- 3. Procedural Elements for Computer Graphics by D F Rogers, McGrawHill (Indian Edition).
- 4. Interactive Computer Graphics, A top-down approach with OpenGL by Edward Angele, Addison Wesley.
- 5. Introduction to Computer Graphics by Godse

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester III Course Title: Artificial Intelligence Course Code: P-ARI-331-III Total Lectures: 60

Learning Objectives:

The objective of this course is to

- > To enable students to differentiate optimal reasoning vs human like reasoning.
- > To make the students aware of AI problem solving techniques.
- > To discuss with students about the propositional logic.
- > To facilitate the students to study various learning models.

- > Describe the fundamentals of Artificial Intelligence and its applications.
- > Apply various logical systems to inference the different logical problems.
- Identify the machine learning techniques.
- > understand the principles of problem solving and be able to apply them successfully.

Unit No	Contents	No of
		Lectures
UNIT-I	Introduction, A.I. Representation, Non-AI &AI Techniques,	10
Fundamentals of	Foundations and History of Artificial Intelligence, Applications	
Artificial	of Artificial Intelligence, Intelligent Agents, Architecture of	
Intelligence	Intelligence Agents. Computer vision, Natural Language	
	Possessing.	
UNIT-II	Problem Solving Methods	20
Problem Solving	Problem Solving Methods, Searching for solutions, Uniformed	
Methods and	search strategies, Informed search strategies, Local search	
Knowledge	algorithms and optimistic problems, Adversarial Search,	
Representation	Search for games, Heuristics, Alpha – Beta pruning.	
& Reasoning	Knowledge Representation & Reasoning	
	Propositional logic, Theory of first order logic, Inference in	
	First order logic, Forward & Backward chaining, Resolution,	
	Probabilistic reasoning, Utility theory, Hidden Markov Models	
	(HMM), Bayesian Networks.	
UNIT-III	Supervised and unsupervised learning, Decision trees,	15
Machine	Statistical learning models, Learning with complete data -	
Learning	Naive Bayes models, Learning with hidden data – EM	
	algorithm, Reinforcement learning.	

Unit No.	Contents	No. of Lect.
UNIT-IV	Introduction, Design principles of pattern recognition system,	15
Pattern	Statistical Pattern recognition, Parameter estimation methods	
Recognition	– Principle Component Analysis (PCA) and Linear	
	Discriminant Analysis (LDA), Classification Techniques -	
	Nearest Neighbor (NN) Rule, Bayes Classifier, Support Vector	
	Machine (SVM), K – means clustering.	

- 1. Artificial Intelligence by Puntambekar, Tech Max Publication
- 2. Artificial Intelligence: A Modern Approach by Russell, Pearson Education Publication
- 3. Artificial Intelligence: A New Synthesis by Nilsson, Asia PTE Ltd Publication
- 4. Introduction To Artificial Intelligence & Expert Systems by Patterson, PHI Education Publication
- 5. A First Course in Artificial Intelligence by Deepak Khemani, MC Graw Hill Publication

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceM. Sc. (Computer Science) Second Year Semester III
Course Title: Web Development Using PHP (Lab-Course V)Course Code: P-LAC-332Credits: 2Total Lectures: 60Max. Marks: 50

Learning Objectives:

- > To train the students in creating dynamic web pages using PHP
- Inculcate Core-PHP, Server-Side Scripting Language
- Demonstrate PHP-Database handling.
- > One PHP frame work for effective design of web application.
- > To make the students create web pages using Java-Script, CSS, MVC .
- > To familiarize students with AJAX and Bootstrap.

Course Outcomes: After completion of this course students will be able to:

- > Develop web pages using HTML, CSS and JavaScript
- > Build web applications using PHP and MySQL database
- > Discuss the integration of PHP with AJAX & BootStrap
- > Create and deploy a portable web-based system
- > Test and debug object-oriented PHP script.

LIST OF PRACTICAL

- 1. Write a Program for
 - a. Print "Hello World" in PHP
 - b. Defining Variables in php with all datatypes.
 - c. Variable scope
 - d. To differentiate print and echo statement
- 2. Write a Program for
 - a. Checking number is even or odd
 - b. Add numbers using function.
- 3. Write a Program for
 - a. Anonymous function
 - b. Default Parameter
 - c. Missing Parameter
 - d. Variable Function
 - e. Variable Parameter
- 4. Write a Program for
 - a. All String functions
 - b. Encode a string using encoding function in php
- 5. Write a Program for
 - a. Creating and Accessing Indexed Array.
 - b. Creating and Accessing Associative Array.
 - c. Creating and Accessing Multidimensional Array.

- 6. Write a Program for Extracting Multiple values from array using
 - a. Array_slice()
 - b. Array_chunk()
 - c. Array_keys()
 - d. Array_values()
 - e. Array_key_exists
 - f. isset()
 - g. array_splice()
- 7. Write a Program for creating forms in PHP using
 - a. GET
 - b. POST
- 8. Write a program for creating sessions and destroying a session in php.
- 9. Write a program for tables using BootStrap.
- 10. Write a program for different styles of buttons using BootStrap.
- 11. Write a program for different progress bar using BootStrap.
- 12. Write a program for dropdowns using BootStrap.
- 13. Write a program for navbar using BootStrap.
- 14. Working with MySql Commands Like DML, DDL
- 15. Write a Program for Data base connectivity in PHP
- 16.Write a Program for
 - a. Printing "HelloWorld" in JavaScript
 - b. Working with variables in JavaScript
 - c. Working with Control Statements in JavaScript
- 17.Write a Program for
 - a. JavaScript Functions
 - b. JavaScript Pop up Boxes
- 18. Working with Form and validating the forms in PHP
- 19. Working with Advance CSS.
- 20. Mini Project

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceM. Sc. (Computer Science) Second Year Semester III
Course Title: Linux Administration (Lab-Course VI)Course Code: P-LAC-333Credits: 2Total Lectures: 60Max. Marks: 50

Learning Objectives:

- > To familiarize students with the Linux environment
- > To enable the students work with various basic LINUX commands
- > To learn the fundamentals of shell scripting/programming
- > To familiarize students with basic Linux administration

Course Outcomes: After completion of this course students will be able to:

- > Work confidently in Unix/Linux environment.
- Make use of various commands in LINUX to control various resources like file, network, disk etc
- > Develop Shell Script using Shell commands.
- > Master the basics of Linux administration

LIST OF PRACTICALS

- 1. Installation steps of Linux OS.
- 2. File related commands in Linux
- 3. Directory related commands in Linux
- 4. User management commands in Linux.
- 5. Group management commands in Linux.
- 6. Password management in Linux
- 7. Communication commands
- 8. Piping Commands
- 9. Wild Card characters in Linux
- 10.Vi editor
- 11.Shell scripts (5 Programs)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceM. Sc. (Computer Science) Second Year Semester III
Course Title: Digital Image Processing (Lab-Course VII)Course Code: P-LAC-334Credits: 2Total Lectures: 60Max. Marks: 50

Learning Objectives:

- > To familiarize students with digital image fundamentals.
- > To discuss the properties of digital image.
- To get exposed to simple image enhancement techniques in Spatial and Frequency domain.
- > To learn image degradation and restoration techniques.
- > To study the Morphological Image Processing and Image Segmentation

Course Outcomes: After completion of this course students will be able to:

- > After completion of this course, students should be able to:
- Know and understand the fundamentals of digital image processing, such as digitization, sampling, quantization, and 2D-transforms.
- > Operate on images using the image enhancement and Filtering Methods.
- > Understand the image degradation and restoration
- > perform operations on color images
- > apply the morphological operation and segmentation techniques on images.
- > Perform color image processing Operation

LIST OF PRACTICALS

- 1. Programs to demonstrate read, write and display images in MATLAB.
- 2. Programs to demonstrate Data classes and image types in MATLAB.
- 3. Programs to demonstrate Image Operations in MATLAB.
- 4. Programs to demonstrate Functions in MATLAB.
- 5. Programs to demonstrate Flow control sin MATLAB
- 6. Programs to demonstrate Intensity Transformations in MATLAB.
- 7. Programs to demonstrate Histogram, Histogram Equalization and Histogram Matching.
- 8. Programs to demonstrate Linear Spatial Filtering and Nonlinear Spatial Filtering.
- 9. Programs to demonstrate Filtering in Frequency Domain.
- 10. Programs to demonstrate Geometric Transformation.
- 11. Programs to demonstrate Image Restoration and Registration.
- 12. Programs to demonstrate Color Image Processing.
- 13. Program to demonstrate Morphological Image Processing Operations
- 14. Program to demonstrate image segmentation techniques.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Big Data Analysis

Course Code: P-BIA-426	Credits: 4
Total Lectures: 60	Max. Marks: 100

Learning Objectives:

- This course provides an overview of approaches facilitating data analytics on huge datasets.
- To Implement clustering, regression, association rules, and decision trees for data analysis and prediction.
- To assess realistic application of big data analytics technologies for different usage scenarios and start with their own experiments.

- Understand the concept and challenge of bigdata and why existing technology is in adequate to analyze the bigdata
- Collect, manage, store, query, and analyze various form of big data;
- ▶ Gain hands-on experience on large-scale analytics tools to solve some big data problems;
- > Understand the impact of big data for business decisions and strategy.

Unit No	Contents	No of
		Lectures
Unit I:	Big Data Overview, Data Structures, Analyst Perspective on	20
Introduction to	Data Repositories, State of the Practice in Analytics, Bl Versus	
Big Data	Data Science, Current Analytical Architecture, Drivers of Big	
Analytics & Data	Data, Emerging Big Data Ecosystem and a New Approach to	
Analytics	Analytics, Key Roles for the New Big Data Ecosystem.	
Lifecycle	Data Analytics Lifecycle Overview	
	Key Roles for a Successful Analytics, Project Background and	
	Overview of Data Analytics Lifecycle	
	Phase 1: Discovery: Learning the Business Domain, Resources,	
	Framing the Problem, Identifying Key Stakeholders,	
	Interviewing the Analytics Sponsor, Developing Initial	
	Hypotheses, identifying Potential Data Sources.	
	Phase2: Data Preparation: Preparing the Analytic Sandbox,	
	Performing ETLT, Learning About the Data, Data Conditioning,	
	Survey and Visualize, Common Tools for the Data Preparation	
	Phase.	
	Phase 3: Model Planning: Data Exploration and Variable	
	Selection, Model Selection, Common Tools for the Model	
	Planning Phase.	
	Phase4: Model Building Common Tools for the Mode/Building	
	Phase. Phase5: Communicate Results.	
	Phase 6: Operationalize.	

Unit No	Contents	No of
		Lectures
Unit- II: Review	Introduction to R: Graphical User Interfaces, Data Import and	10
of Basic Data	Export, Attribute and Data Types, Descriptive Statistics,	
Analytic	Exploratory Data Analysis, Visualization Before Analysis, Dirty	
Methods Using R	Data, visualizing a Single Variable, Examining Multiple	
_	Variables, Data Exploration Versus Presentation	
	Statistical Methods for Evaluation: Hypothesis Testing,	
	Difference of Means, Wilcoxon Rank- SumTest, Type I and	
	Type II Errors, Power and Sample Size, ANOVA.	
Unit III:	Overview of Clustering, K-means, Use Cases, Overview of the	15
Advanced	Method, Determining the Number of Clusters, Diagnostics,	
Analytical	Contents, Reasons to Choose and Cautions.	
Theory and	Decision Trees: Overview of a Decision Tree, Decision tree	
Methods:	Algorithms, Decision Trees in R, Naïve Bayes, Naïve Bayes in R	
Clustering &		
Decision Trees		
Unit IV:	Overview of Association, Evaluation of Candidate rules,	15
Advanced	Applications of Association Rules, An Example: Transaction in	
Analytical	a Grocery Store, Validations & testing.	
Theory and	Linear Regression: Use cases, model description, and	
Methods:	diagnostics. Logistic Regression: Use cases, model description,	
Association	and diagnostics. Reasons to choose & cautions.	
Rules and		
Regression		
DEEEDENCE BOOKS	<u>,</u>	

1. Data Science & Big Data Analytics, Discovering, Analyzing, Visualizing and Presenting Data, EMC Education Services. By WILEY Publication

2. Big Data, Black Book: Covers Hadoop2, Map Reduce, Hive, YARN, Pig, Rand Data Visualization Paperback–2016

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Advanced Java Programming Course Code: P-AJP-427 Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

- > Learning basic of Java programming, and OOP's concepts.
- > Understand Threads, Packages, and handling runtime errors.
- > Inculcate knowledge of developing GUI applications using Swing, & AWT components.
- > Learning event handling paradigm, interaction with back-end databases.
- > Learn to Create Web Applications using Java.

- > Write, compile and execute simple Java programs.
- Solve complex problems using the concepts of class, inheritance, interface and packages.
- > Test for runtime exceptions arise in java applications.
- > Make use of threads to create multithreaded java applications.
- > Design graphical application, work with events.
- > Interact with database with JDBC , Develop web-based applications.

Unit No	Contents	No of
		Lectures
Unit-I		15
Introduction and	Programming language Types and Paradigms, Computer	
Object-Oriented	Programming Hierarchy, How Computer Architecture Affects	
Programming	a Language? Why Java? Flavors of Java, Java Designing Goal,	
	Role of Java Programmer in Industry, Features of Java	
	Language, JVM–The heart of Java, Java's Magic Byte code.	
	Installing Java, Java Program Development, Java Source File	
	Structure, Compilation, Executions.	
	Object Oriented Programming Class Fundamentals, Object &	
	Object reference, Object Life time & Garbage Collection,	
	Creating and Operating Objects, Constructor & initialization	
	code block, Access Control, Modifiers, methods Nested, Inner	
	Class & Anonymous Classes, Abstract Class & Interfaces	
	Defining Methods, Argument Passing Mechanism, Method	
	Overloading, Recursion, Dealing with Static Members,	
	Finalize() Method, Native Method.	

Unit No	Contents	No of
		Lectures
Unit II Extending	Use and Benefits of Inheritance in OOP, Types of Inheritance in	15
Classes	Java, Inheriting Data members and Methods, Role of	
Inheritance and	Constructors in inheritance, Overriding Super Class Methods,	
Packages	Use of "super", Package, Organizing Classes and Interfaces in	
	Packages, Package as Access Protection, Defining Package,	
	CLASSPATH Setting for Packages, Naming Convention for	
	Packages.	
Unit III	The Idea behind Exception, Exceptions & Errors, Types of	15
Exception	Exception, Control Flow In Exceptions, JVM reaction to	_~
Handling,	Exceptions, Use of try, catch, finally, throw, throws in	
Thread and GUI	Exception Handling, In-built and User Defined Exceptions,	
Programming	Checked and Un-Checked Exceptions.	
Exception	Thread: Understanding Threads, Needs of Multi-Threaded	
Handling	Programming, Thread Life-Cycle, Thread Priorities,	
8	Synchronizing Threads, Inter Communication of Threads,	
	Critical Factor in Thread –Dead Locks.	
	GUI Programming:	
	Designing Graphical User Interfaces in Java, Components and	
	Containers, Basics of Components, Using Containers, Layout	
	Managers, AWT Components, Adding a Menu to Window,	
	Extending GUI Features Using Swing Components, Java	
	Utilities (java.util Package) The Collection Framework:	
	Collections of Objects, Collection Types, Sets, Sequence, Map,	
	Understanding Hashing, Use of ArrayList & Vector.	
Unit IV Event	Event Handling	15
Handling, JDBC	Event-Driven Programming in Java, Event-Handling Process,	
and Servlets	Event-Handling Mechanism, The Delegation Model of Event	
	Handling, Event Classes, Event Sources, Event Listeners,	
	Adapter Classes as Helper Classes in Event Handling.	
	Database Programming using JDBC	
	Introduction to JDBC, JDBC Drivers & Architecture, CURD	
	operation Using JDBC, Connecting to non-conventional	
	Databases.	
	Java Server Technologies Servlet	
	Web Application Basics, Architecture and challenges of Web	
	Application, Introduction to servlet, Servlet life cycle	
	Developing and Deploying Servlets, Exploring Deployment,	
	Descriptor (web.xml), Handling Request and Response.	
REFERENCE BOOKS		

- 1. Core Java Volume I Cay H. Hortsman and G. Cornell
- 2. Core Java Volume II: Advanced Features Cay H. Hortsman and G. Cornell
- 3. The Complete Reference Java Seventh Edition, Herbert Schildt

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Cloud Computing

Course Code: P-CLC-428	Credits: 4
Total Lectures: 60	Max. Marks: 100

Learning Objectives:

- Learn fundamental ideas behind Cloud Computing, the evolution of the paradigm, its applicability; benefits, as well as current and future challenges.
- Comprehend basic ideas and principles in data center design; cloud management techniques and cloud software deployment considerations.
- Inculcate Cloud storage technologies and relevant distributed file systems, NoSQL databases and object storage;

- Explain the core concepts of the cloud computing paradigm: how and why this paradigm shift came about, the characteristics, advantages and challenges brought about by the various models and services in cloud computing.
- Apply fundamental concepts in cloud infrastructures to understand the tradeoffs in power, efficiency and cost, and then study how to leverage and manage single and multiple datacenters to build and deploy cloud applications that are resilient, elastic and cost-efficient.
- Discuss system, network and storage virtualization and outline their role in enabling the cloud computing system model.
- Illustrate the fundamental concepts of cloud storage and demonstrate their use in storage systems such as Amazon S3 and HDFS.
- Analyze various cloud programming models and apply them to solve problems on the cloud.

Unit No	Contents	No of Lectures
UNIT I:	Introduction, Mainframe architecture, Client-server	15
Enterprise	architecture, 3-tier architectures with TP monitors	
computing: a	Internet technology and web-enabled applications	
retrospective	Web application servers	
And Internet as	Internet of services	
a Platform		
UNIT II:	Emergence of software as a service: Successful SaaS	15
Software as a	architectures, Dev 2.0 platforms, Cloud computing	
service and	Infrastructure as a service: Amazon EC2,	
Cloud computing	Platform as a service: Google App Engine	
platforms	Microsoft Azure	
UNIT III: Web	Web Services: SOAP and REST	15
Services , AJAX	SOAP Vs REST, AJAX: Asynchronous 'rich' interfaces	
and Mashups	Mashups: user interface services	

Unit No	Contents	No of Lectures
UNIT IV:	Relational Databases, Cloud File systems; GFS and HDFS,	115
Data In Cloud	BigTable, HBase, and Dynamo, Cloud data stores: Datastore,	
and MapReduce	SimpleDB, Parallel Computing, The MapReduce Model. Parallel	
and Extension	efficiency and MapReduce	
	Enterprises batch processing using MapReduce	

- 1. Enterprise Cloud Computing: Technology, Architecture, Applications Gautam Shroff. Cambridge University Press
- 2. Cloud Computing A Practical Approach- AnthonyT. Velte, Toby J. Velte, Robert Elsenpeter . McGraw Hill Education (India) Pvt Ltd.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Information Security

Course Code: P-INS-429-I	
Total Lectures: 60	

Learning Objectives:

- To identify computer and network security threats, classify the threats and develop a security model to prevent, detect and recover from the attacks.
- To encrypt and decrypt messages using block ciphers, sign and verify messages using well known signature generation and verification algorithms.
- To analyze existing authentication and key agreement protocols, identify the weaknesses of the se protocols.
- To download and install an e-mail and file security software, PGP, and efficiently use the code to encrypt and sign messages.

- Define what information is?
- > Appreciate the value of information to the modern organization
- > Understand the CI Atrial of Confidentiality, Integrity and Availability
- > Appreciate the difficulties that arise when valuable information needs to be shared
- Identify the five leading-edge resources that have up-to-date information on information security.

Unit No	Contents	No of
		Lectures
UNIT I	What is Information Security & Why do you need it? –Basics	15
Introduction	Principles of Confidentiality, Integrity Availability Concepts	
	Policies, procedures, Guidelines, Standards Administrative	
	Measures and Technical Measures, People, Process,	
	Technology	
UNIT II Current	Current Trends in information Security, Cloud Computing:	15
Trends in	benefits and Issues related to info Security Standards	
information	available for InfoSec: Cobit, Cadbury, ISO27001, OWASP,	
Security	OSSTMM, etcAn Overview, Certifiable Standards: How,	
	What, When, Who	
UNIT III Threat	Vulnerability, Threat and Risk, Risk Assessment and	12
and Risk	Mitigation + Quick fixes, Introduction to BCP/DRP/Incident	
	management, Segregation and Separation of Duties & Roles	
	and responsibilities, ITACT2000	

Unit No	Contents	No of Lectures
UNIT IV	Types of assessments for Information Security	18
assessments for	1. VAPT of Networks	
Information	2. Web Application Audits	
Security	3. IT assessments or audits	
-	4. Assessment of Network Equipment's	
	5. Assessment of Security Devices (Web Filtering,	
	Firewalls, IDS/IPS, Routers	
	6. Data Center Assessment	
	7. Security of Application Software	
	8. SAP Security	
	9. Desktop Security	
	10. RDBMS Security	
	11. BCP/DRP assessments	
	12. Policy reviews	

- 1. Security Engineering: A Guide to Building Dependable Distributed Systems (Hardcover)by Ross J. Anderson
- 2. The Web Application Hacker's Handbook: Discovering and Exploiting Security Flaws (Paperback) by Dafydd Stuttard

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Soft Computing Code: P-INS-429-II Credits: 4

Max. Marks: 100

Course Code: P-INS-429-II	
Total Lectures: 60	

Learning Objectives:

- > To understanding principles of neural networks and Fuzzy Logic fundamentals.
- > To enable the students, know the applications of Neural Networks.
- > To understand various learning algorithms in Artificial Neural Network
- > To understand operations of Fuzzy Logic
- > To understand the application of Artificial Neural Network & Fuzzy Logic

- > Identify the fundamentals and types of neural networks
- > Understand properties, Operations and relations, Fuzzy sets
- > Understand Organization of the Brain and develop the artificial model
- > Understand Applications of ANN and develop the models using different algorithms.

Unit No	Contents	No of
		Lectures
UNIT I:	Crisp Sets: An Overview, Fuzzy Sets: Basic Types, Fuzzy Sets:	
Introduction to	Basic Concepts, Membership Functions, Fuzzy Sets Vs Crisp	
Fuzzy Logic	Sets, Additional Properties of alpha cuts, Presentation of fuzzy	
	sets, Extension principle for fuzzy sets.	
	Operations on fuzzy sets Fuzzy complements, Fuzzy Union,	15
	Fuzzy Intersections, Crisp & Fuzzy Relation, Binary Fuzzy	
	Relation, Binary Relation on single set, Fuzzy Equivalence	
	Relations, Fuzzy Compatibility Relation, Fuzzy Max-Min and	
	Max-product composition.	
UNIT II	Introduction to Neural Networks Biological Neuron and their	
Introduction to	Artificial Neuron, McCulloch-Pits Neuron Model, Perceptron	
Neural Networks	Classification, Linearly Separability, NOR Problem, Overview	
	of Neural Network Architecture, Learning Rules-Supervised	15
	Learning- Unsupervised Learning- Perceptron Learning-	
	Reinforcement Learning-Delta Learning Rule, Hebbian	
	Learning	
UNIT III:	Multilayer Feed forward Network, Error Correctio0n Gradient	
Multilayer Feed	Descent Rule, Generalized Delta Learning, Back propagations	
Forward	training algorithm and derivation of weight, Variant in Back	15
Network	propagations, Radial Basis Function (RBF), Application of BP	
	and RBF N/W, ADALINE and MADALINE Model	

Unit No	Contents	No of Lectures
UNIT IV: Recurrent Network and Neuro Fuzzy System	Recurrent Network, Hopfield Network, Counter propagation networks, Boltzmann Machine, Adaptive Resonance theory (ART). Fuzzy System, Neuro Fuzzy System and Applications, Fuzzification & Defuzzification, Fuzzy neurons, Fuzzy Neural Network, Fuzzy associative memory, Application in Pattern Recognition- Image Data Processing, Character, Face, Finger, Palm, Iris Recognition, Application in Expert System	15

- 1. Fuzzy Sets, Uncertainty, and Information, George J Klir & Tina A Folger (PHI Learning Pvt Ltd)
- 2. Introduction to Artificial Neural Network by Jaeck M. Zurada, Jaico publishing house
- 3. Neural Network Algorithms, Applications, and Programming Techniques- James A Freeman/ David M Skapura (Pearson Education Asia)
- 4. Understanding Neural Network & Fuzzy Logic Basic Concepts & Applications, Stamatios V Kartalopoulos (Author) (PHI Pvt Ltd)

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Pattern Recognition Course Code: P-INS-429-III Credits: 4 Total Lectures: 60 Max. Marks: 100

Learning Objectives:

The objective of this course is to

- > To impart the knowledge on machine learning concepts and artificial intelligence.
- > To nurture the students with the principles on probability in pattern matching arena.
- > To demonstrate the ideas of Supervised and Unsupervised learning with reference to clustering.
- To make the students learn the precepts of Hidden Markov Models and the usage of Decision trees

- Interpret the fundamental concepts of machine perception and Bayesian decision theory in machine learning.
- Inspect parameter estimation in relatively complex probabilistic models using Maximum likelihood and Bayesian approaches.
- > Apply unsupervised and supervised leaning in simple pattern matching problems.
- Summarize the principles of pattern recognition using Hidden Markov Models.

Unit No	Contents	No of
		Lectures
Unit-I	Definition of Pattern Recognition, Components of pattern	15
Pattern	Recognition, Different types of Pattern Recognition, Design	
Recognition	Principles, Approaches of Pattern Recognition System,	
Overview	Training and Learning in pattern recognition system, Patterns	
	and Features Extraction, Application of Pattern Recognition.	
Uni1t-II	Parametric Estimation and supervised learning, Maximum	20
Statistical	likelihood estimation, Bayesian parameter estimation, Non	
Pattern	parametric approaches- Parzen window, KNN estimation,	
Recognition	Unsupervised learning- Clustering Concept, Mathematical	
	foundation-Linear Algebra, Probability Theory, Chi Squared	
	Test, Comparison Supervised and Unsupervised Pattern	
	Recognition.	
Unit-III	Grammar Based Approaches, Elements of Formal Grammars,	15
Syntactic	Parsing Concepts-Parsing Algorithm, Transition Network in	
Pattern	Parsing, Higher Dimensional Grammars, Stochastic Grammars,	
Recognition	Grammars, Graphical Approaches- Graph Isomorphism,	
	Attributed Graphs, Hidden Markov Model in Pattern	
	Recognition, Forward Algorithm in HMM (Hidden Markov	
	Model).	

Unit No	Contents	No of
		Lectures
Unit-IV	Non-metric methods for pattern classification, Non-numeric	10
Principal	data or nominal data, Decision trees, Unsupervised learning	
Component	and clustering, Criterion functions for clustering, Algorithms	
Analysis in	for clustering: K-means, Hierarchical and other methods,	
Pattern	Cluster validation, K-Nearest Neighbor method,	
Recognition	Implementation issues in algorithms for clustering.	

Text Books:

- 1. S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th Ed., Academic Press, 2009
- 2. R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, John Wiley, 2001 3. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

Reference Books:

- 1. Pattern Recognition and Machine Learning C. M. Bishop, Springer, 2009.
- 2. Pattern Recognition S. Theodoridis and K. Koutroumbas, 4th Edition, Academic Press, 2009

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceM. Sc. (Computer Science) Second Year Semester IV
Course Title: Big Data Analysis (Lab-Course VIII)Course Code: P-LAC-430Credits: 2Total Lectures: 30Max. Marks: 50

Learning Objectives:

- This course provides an overview of approaches facilitating data analytics on huge datasets.
- > To Implement clustering, regression, association rules, and decision trees for data analysis and prediction.
- To assess realistic application of big data analytics technologies for different usage scenarios and start with their own experiments.

Course Outcomes: After completion of this course students will be able to:

- Understand the concept and challenge of bigdata and why existing technology is in adequate to analyze the bigdata
- Collect, manage, store, query, and analyze various form of big data;
- ▶ Gain hands-on experience on large-scale analytics tools to solve some big data problems;
- > Understand the impact of big data for business decisions and strategy.

LIST OF PRACTICALS:

- 1. Introduction to R Software and Programming
- 2. Importing and Exporting datasets in R Software
- 3. Study of Different attributes, datatypes and storage data types in R
- 4. Study of Descriptive statistics and Exploratory data analysis in R
- 5. Study of Visualization of single variables in R
- 6. Study of Examining multiple variables in R
- 7. Study of Data exploration vs. Data Presentation in R
- 8. Study of Statistical methods for evaluation in R
 - a. Hypothesis Testing
 - b. Difference of means
- 9. Study of Statistical methods for evaluation in R
 - a. Wilcox on Rank-sumtest
 - b. Type I and Type II errors
 - c. Power and sample size
- 10.Implementation of K-mean clusters in R
- 11. Implementation of Decision Trees in R.
- 12. Implementation of Linear Regression in R
- 13.Implementation of association rules in R

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur
Department of Computer ScienceDepartment of Computer ScienceM. Sc. (Computer Science) Second Year Semester IV
Course Title: Advanced Java ProgrammingCourse Code: P-LAC-431Lab-Course IXCredits: 2Total Lectures: 30

Learning Objectives:

- > Learning basic of Java programming, and OOP's concepts.
- > Understand Threads, Packages, and handling runtime errors.
- > Inculcate knowledge of developing GUI applications using Swing, & AWT components.
- > Learning event handling paradigm, interaction with back-end databases
- > Learn to Create Web Applications using Java.

Course Outcomes: After completion of this course students will be able to:

- > Write, compile and execute simple Java programs.
- > Write programs using OOP's concepts.
- > Design graphical application, work with events,
- > Interact with database with JDBC , Develop web-based applications.

List of Practical

1.Write a java program to check weather a given number is prime or not?

2.Write a java program that demonstrates the fundamental concepts of oops.

3.Write a java program that demonstrates various types of constructors.

4.Write a java program for demonstrating inner class.

5.Demonstrate the concept of Interface with the help of suitable java program.

6.Write a java program that demonstrates the creation and use of user define package.

7.Write a java program that discusses exception handling with the help of any standard exception available in java.

8.Write a java program to implement user defined exception handling.

9.Write a java program that implements the multi-threading concepts.

10.Write a java program that demonstrates the use of AWT components.

11.Explain collection framework with help of suitable java program.

12.Implement java program that generates and handles anyone type of event.

13.Write a java program that demonstrates the concepts of JDBC.

14.Develop a simple java servlet.

15.Develop a mini project in java.

Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Computer Science M. Sc. (Computer Science) Second Year Semester IV Course Title: Soft Computing

Course Code: P-INS-429-II Total Lectures: 30 Credits: 2 Max. Marks: 50

Learning Objectives:

- > To understanding principles of neural networks and Fuzzy Logic fundamentals.
- > To understand various learning algorithms in Artificial Neural Network
- > To understand operations of Fuzzy Logic
- > To understand the application of Artificial Neural Network & Fuzzy Logic

Course Outcomes: After completion of this course students will be able to:

- > Understand properties, Operations and relations, Fuzzy sets
- > Understand Organization of the Brain and develop the artificial model
- > Understand Applications of ANN and develop the models using different algorithms.

LIST OF PRACTICALS:

- 1. Explain Fuzzy Logic with example.
- 2. Programs in MATLAB to implement intersection of two fuzzy sets.
- 3. Programs in MATLAB to implement union of two fuzzy sets.
- 4. Programs in MATLAB to find complement of fuzzy set.
- 5. Programs in MATLAB to find ANB', A'NB',AUB',A'UB for fuzzy sets.
- 6. Program in MATLAB to implement and Prove Demorgan's laws for two fuzzy sets.
- 7. Program in MATLAB to implement and explain perceptron learning rule for two inputs.
- 8. Program in MATLAB to implement and explain perceptron learning rule for more inputs.
- 9. Program in MATLAB to implement and explain delta learning rule for two inputs.
- 10. Program in MATLAB to implement and explain delta learning rule for more inputs.