Rajarshi Shahu Mahavidyalaya (Autonomous), Latur Department of Mathematics Academic Year: 2021-2022

Term - First (Jul,2021 - Nov.,2021)

Name of Assistant Professor: Mrs. A. B. Kale

Subject: Mathematics

1. Details of Classes to be taught

Sr. No.	Class	Course Name	Course Code	(Theory / Practical)	
1	U.G-I	Algebra-I	U-MAT-138	Theory	
2.	U.G-II	Group Theory	U-MAT-340	Theory	
3.	P.G-I	Theory of Prob-	P-COA-167	Theory	
		abiity			
4.	P.G-II	Classical	P-LAB-169	Theory	
		Mechamics			
5.	U.G-II	Lab Course on	U-MAT-342	Practical	
		Problems in			
		Group Theory			
6.	P.G-I	Lab Work-I	P-LAB-169	Practical	
		(Latex Typeset-			
		ting)			

1. Summary of Lesson Flan for U.G-II

Sr.No.	Unit to be covered	Date	No.of	Academic	No.of Test /
			Lec-	activities to	Assignment
		ı.	tures	be organized	with topic and
					date
1.	Unit-I : Groups and Sub-	08/07/20201	18		
	groupDefinition of group, subgroups,	to			
	Elementry properties of groups, finite	14/08/2021			
	groups, cyclic groups and its properties.				
2.	Unit- II Permutation groups and	20/08/2021	17	Classroom	Assignment 1
	isomorphism Symmetric groups, Per-	to		Seminar	
	mutations, Group isomorphism, Auto-	30/09/2021			
	morphism and their properties, Cayleys				
	theorem,				.
3.	Unit-III Coset and Lagrange's	01/10/2021	20	Classroom	Assignment 2
	theorem Definition of coset and prop-	to		Seminar	
	erties, Lagrange's theorem and its con-	25/11/2021			
	sequences, an applications of cosets to				
	permutation groups. External direct				
	product, definition and examples of				
	normal subgroups and factor groups.				

2. Summary of Lesson Plan for P.G-II

Sr.No.	Unit to be covered	Date	No.of	Academic	No.of Test /
51,110.	Onit to be covered	Date	Lec-	activities to	Assignment
		,	tures	be organized	with topic and
,			tures	De Organizea	date
1.	UNIT I:Mechanical of system of par-	05/07/2020	23	Classroom	date
J.,	ticles, Mechanics of system of parti-	to	20	Seminars	
	cles, Conservation theorems conserva-	31/07/2021		Demmars	
	tive forces with examples, Constraints,	31/01/2021			
	Generalized co-ordinates. D. Alem-				
	bert's principle, Lagrange's equations				
	of motion. The forms of Lagrange's				
	equations of motion for non conserva-		ļ		
	tive systems and partially conservative				
	and partially non conservative systems.				
	Kinetic energy as a homogeneous func-				
	tion of generalized velocities. Simple		}		
	applications of the Lagranian formula-				
	tion.				
2.	UNIT II :Cyclic co-ordinates and gen-	02/08/2021	25	Classroom	Assignment 1
	eralized momentum conservation Theo-	to		Seminars	110018
	rems, Calculus of variation, Euler La-	02/09/2021			
	grange's equation, First integrals of Eu-				
	ler Lagrange's equation, the case of				
	several dependent variables, Geodesics				
	in a plane, the minimum surface of		l		
	revolution, Brachistochrome problem.				8
	Isoperimetric problems, problems of				
	maximum enclosed area.				
3.	UNIT III: Hamiltonian function,	03/09/2021	21	Classroom	Assignment 2
	Hamilton's canonical equations of mo-	to		Seminars	
	tion, Derivation of Hamilton's equa-	30/09/2020			
	tions from variational principle, Phys-				
	ical significance of Hamiltonian, the				
	principle of least action, Jacobi's form				
	of the least action principle, cyclic co-				
	ordinates and Routh's procedure.	01/10/0001	00	CI)	
4.	UNIT IV:The independent co-	01/10/2021td	25	Classroom	
	ordinates of a rigid body, Orthogonal	30/10/2021		Seminars	
	transformations, Properties of transformation matrix, Infinitesimal rotations,				
	The Eulerian angles, The Calyley-Klein				
	parameters, Eulers theorem on motion				
	of rigid body, Angular momentum and				
	kinetic energy of motion of a rigid body				
	about a point.				
	about a point.		L	L	

(Akale Teacher 175. A.B. kala Hot

PRINCIPAL
Rajarshi Shahu Mahavidyalay
(Autonomous), Latur

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Structured Work Plan for Teaching (2021 to 2022)

1. Details of Classes to be taught

4	З	2	├->	Sr. No.
M.ScI	M.ScI	M.sc -II	B.ScII	Class
		Mrs. A.B.Kale		Name of Assist. Prof.
	Subject			
Theory of Probability	Ordinary Differential Equation	Classical Mechanics	Group Theory + Practical	Paper

3.Summary of Lesson Plan

Name of Teacher: Mrs A.B.Kale

Class : M.Sc. I (First Semester)

			Ы	No.	Sr.
	P-ODE-166)	(Ordinary Differential Equations –	Mathematics		Subject
Unit IV	Unit III :	Unit II :	Unit I	Sub-components of	Components/
17	20	18	20	Lectures	Required
10/12/2021-30/12/2021	15/11/2021-9/12/2021	23/10/2021-13/11/2021	27/09/2021 -22/10/2021		Duration
MCQ Test	Assignment 2	Seminar	Assignment 1		Academic activities to be organized

4.Summary of Lesson Plan

Class : M.Sc. I (First Semester)

Name of Teacher: Mrs A.B.Kale

		(Theory of Probability P-THP -168)	1 Mathematics	Sr. Subject
Unit IV	Unit III:	of ity Unit II:	tics Unit I	t Components/ Sub-components of curriculum
15	20	18	15	Required Lectures
10/12/2021-30/12/2021	15/11/2021-9/12/2021	23/10/2021-13/11/2021	27/09/2021 -22/10/2021	Duration
MCQ Test	Assignment 2	Seminar	Assignment 1	Academic activities to be organized

Teacher

Heread,
Department of Mathematics,
Rajarshi Shahu Mahavidyalaya,
(Autonomous) Latur-413512

Princerpal
Princerpal
Rajarshi Shahu Mahavidyalaya
(Autonomous), Latur