Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Structure and Curriculum of Four Year
Multidisciplinary Degree (Honors) Programme with
Multiple Entry and Exit option

Undergraduate Programme of Science and Technology B.Sc. (Honors) in Biotechnology

Board of Studies

in

Biotechnology

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

w.e.f. June, 2023

(In Accordance with NEP-2020)

Review Statement

The NEP Cell reviewed the Curriculum of **B.Sc.** (**Honors**) in **Biotechnology** Programme to be effective from the **Academic Year 2023-24.** It was found that, the structure is as per the NEP-2020 guidelines of Govt. of Maharashtra.

Date: 09/08/2023

Place: Latur

NEP Cell

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

CERTIFICATE

I hereby certify that the documents attached are the Bonafide copies of the Curriculum of **B.Sc.** (Honors) in Biotechnology Programme to be effective from the Academic Year 2023-24.

Date: 14/07/2023

Place: Latur

(Dr.Sachin Kulkarni)

Chairperson

Board of Studies in Biotechnology

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Members of Board of Studies in the Subject Biotechnology Under the Faculty of Science and Technology

Sr. No.	Name	Designation	In position
1	Dr. Sachin S. Kulkarni	Chairperson	HoD
1	Head, Department of Biotechnology,	Champerson	Hob
	RajarshiShahuMahavidyalaya, Latur (Autonomous)		
2	Prof. Tukaram. A. Kadam	Member	V.C. Nominee
2		Member	v.C. Nominee
	Professor, School of Life Sciences SRTMU, Nanded.		
3	Dr. Rahul. P. Bhagat	Member	Academic Council Nominee
	Asst. Professor, Department of Biotechnology, Govt.		
	Institute of Science, Aurangabad (Autonomous)		
4	Dr. Rajesh M. Jorgewad	Member	Academic Council Nominee
	Asst. Professor, Department of Biotechnology and		
	Bioengineering, KIT college, Kolhapur (Autonomous)		
5	Dr. Gunderao. H. Kath <mark>wate</mark>	Member	Expert from outside for Special
	Asst. Professor, Dept. of Biotech. S. P. P. U. Pune		Course
6	Mr. Abhay. M. Desai	Member	Expert from Industry
	Wockhardt, Aurangabad		
7	Dr. SantoshNarwade	Member	P.G. Alumni
	Serum Institute Pvt.Ltd. Pune	12mm 5	3-9II
8	Dr. Manisha. A. Dhotre	Member	Faculty Member
9	Mr. Udaybhanu. P. Sirdeshmukh	Member	Faculty Member
10	Dr. Ravindra. B. Ade	Member	Faculty Member
11	Dr. Sanghapa <mark>l. S. Kshir</mark> sagar	Member	Faculty Member
12	Mr. Suraj. D. Kadam	Member	Faculty Member
13	Mr. Akash. J. Waghmare	Member	Faculty Member
14	Miss. Swati G. Swami	Member	Faculty Member
15	Mr. Sanket M. Bansode	Member	Faculty Member
16	Miss. Karuna S. Komatwar	Member	Faculty Member
17	Dr. Kakasaheb S. Raut	Member	Member from same Faculty

From the Desk of the Chairperson...

Biotechnology as a subject is a highly interdisciplinary that combines biological sciences with engineering technologies to manipulate living organisms and biological systems to produce products that advances healthcare, medicine, agriculture, food, pharmaceuticals and environment. At its simplest, biotechnology is technology based on biology - which harnesses cellular and bimolecular processes to develop technologies and products that help to improve our lives and health of our planet.

Taking into consideration of the importance of Biotechnology, Rajarshi Shahu Mahavidyalaya, Latur (Autonomous), have taken an initiative to introduce a new emerging field as an undergraduate Programme in biotechnology under the faculty of science. B. Sc. Biotechnology is a Three-year graduate degree program which is started in the academic year 2004-05 followed by the postgraduate program started in academic year 2006-07.

National Education Policy (NEP) 2020 recognizes the relevance of biotechnology in the education system due to its interdisciplinary nature, potential for research and innovation, and its alignment with the development of 21st-century skills. By integrating biotechnology into the curriculum, the policy aims to prepare students for the challenges and opportunities of a rapidly advancing biotechnology driven world.

NEP-2020 has conceptualized the idea to develop well rounded competent individuals for making the nation a self-reliant and global leader. In the same spirit, we at Department of Biotechnology, have developed a curriculum framework to encompass the goals of NEP 2020. In the overall curriculum we have incorporated choice of courses of study, creating academic pathways having constructive combinations with multiple entry and exit points as well as focus on experiential learning for students by introducing multidisciplinary, skill enhancement, vocational courses along generic elective(s) and course based on Indian knowledge system and actual Hand's on training in the recent and trending areas of Biotechnology.

With reference to global changes occurring in higher education in various national and foreign universities, the newly designed syllabi of B.Sc. Biotechnology as per NEP 2020 guidelines are effectively implemented from June, 2023. The committee members of Board of Studies in Biotechnology also took the local need and employability of graduate students into consideration while framing the given curriculum, keeping in view of the guidelines given in the University Grants Commission, New Delhi.

By aligning curriculum development, pedagogy, interdisciplinary connections, research opportunities, industry collaborations, teacher training, and available infrastructure with the institute, the department of biotechnology plans to integrate students with a comprehensive understanding of biotechnology, foster critical thinking and research skills, and prepare them for future careers in the field.

(Dr. Sachin Kulkarni)

Chairperson

Board of Studies in Biotechnology

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Index

Sr. No.	Content	Page No.
1	Structure for Four Year Multidisciplinary UG Programme	1
2	Abbreviations	2
3	Courses and Credits	3
4	UG Program Outcomes	4
5	Curriculum: Semester - I	5
6	DSC I : Cell Biology	6
7	Lab Course –I (Based on DSC-I)	9
8	DSC II : Introductory Microbiology	11
9	Lab Course –II (Based on DSC-II)	14
10	VSC-I: Bioinstrumentation-I	16
11	Curriculum: Semester – II	20
12	DSC-III : Biochemistry	21
13	Lab Course –III (Based on DSC-III)	24
14	DSC-IV: Genetics	26
15	Lab Course –IV (Based on DSC-IV)	29
16	VSC-II : Bioinstrumentation II	31
17	Basket I: Generic/Open Elective (GE/OE)	34
18	Basket II: Skill Enhancement Courses (SEC)	35
19	Basket III: Ability Enhancement Courses (AEC)	36
20	Extra Credit Activities	37
21	Examination Framework	39

शि आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Faculty of Science and Technology

Structure for Four Year Multidisciplinary Undergraduate Degree Programme in Biotechnology Multiple Entry and Exit (In accordance with NEP-2020)

Year		Maj	or			VSC/	AEC/	OJT,FP,CEP,	Credit	Cum./Cr.
&	Sem	DSC	DSE	Minor	GE/OE	SEC	VEC	RP	per	per exit
Level						(VSEC)			Sem.	r
1	2	3		4	5	6	7	8	9	10
	I	DSC I:	NA	NA	GE <mark>-I</mark> :	VSC-I:	AEC-I	CC-I: 02 Cr.	22	
		04 Cr.			04 <mark>C</mark> r.	02 Cr.	MIL:	(NSS, NCC,		
		DSC II:				SEC-I:	02 Cr.	Sports,		
		04 Cr.				02 Cr.	VEC-I:	Cultural)/		
							02 Cr.	CEP-I: 02		
								Cr.		
							1	(SES-I)/		
								OJT: 02 Cr. /		44 Cr.
								Mini Proj <mark>ec</mark> t:		UG
I								02 Cr.		Certificate
4.5	II	DSCIII:	NA	NA	GE-II:	VSC-II:	AEC-	Generic IKS:	22	Certificate
4.3		04 Cr.			04 Cr.	02 Cr.	II	02 Cr.		
		DSC	1			SEC-II:	MIL:	Library Control		
		IV: 04				02 Cr.	02 Cr.			
		Cr.				12	VEC-	त्रपती		
						50	II: 02			
						13	Cr.	सस्या		
						(1	ात्र			
	Cum.	16	-		08	04+04=	04+02	04	44	
	Cr.		11) 2) I C		08	+02=0	ने:11		
			0.00	4.00	Chry		8	2000		

Exit Option: Award of UG Certificate in Major with 44 Credits and Additional 04 Credits Core NSQF

Course/Internship or continue with Major and Minor

Abbreviations:

1. DSC : Discipline Specific Core (Major)

2. DSE : Discipline Specific Elective (Major)

3. DSM : Discipline Specific Minor

4. GE/OE: Generic/Open Elective

5. VSEC : Vocational Skill and Skill Enhancement Course

6. VSC : Vocational Skill Courses

7. SEC : Skill Enhancement Course

8. AEC : Ability Enhancement Course

9. MIL: Modern Indian Languages

10. IKS : Indian Knowledge System

11. FSRCE: Fostering Social Resp<mark>onsibility & Community Engagement</mark>

12. VEC : Value Education Courses

13. OJT : On Job Training

14. FP : Field Projects

15. CEP : Community Engagement and Service

16. CC : Co-Curricular Courses

17. RP : Research Project/Dissertation

18. SES : Shahu Extension Services

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

B.Sc. (Honors) in Biotechnology

Year &					
Level	Semester	Course Code	Course Title	Credits	No. of Hrs.
		101BIO1101	Cell Biology	03	45
		(DSC-I)			
		101BIO1103	Lab Course-I	01	30
		101BIO1102	Introductory Microbiology	03	45
		(DSC-II)			
		101BIO1104	Lab Course-II	01	30
	I	GE-I	From Basket	04	60
		101BIO1501	Bioinstrumentation-I	02	45
		(VSC-I)			
		(SE <mark>C-I</mark>)	From Basket	02	30
		(AE <mark>C-I)</mark>	From Basket	02	30
		(VEC-I)	Constitution of India	02	30
		AIPC/OJT-I	Mini project/ Field Project	02	60
I		Total C	 	22	
4.5		101BIO2101	Biochemistry	03	45
		(DSC-III)	Ziodiomicuj	GE .	.0
		101BIO2103	Lab Course-III	01	30
		101BIO2102	Genetics	03	45
		(DSC-IV)	शिक्षण र	रस्था	
		101BIO2104	Lab Course-IV	01	30
	П	GE-II	From Basket	04	60
	- 1	101BIO2501	Bioinstrumentation -II	02	45
		(VSC-II)	तनसा ज्याति		
	Rai	(SEC-II)	From Basket	02	30
	ixaj	(AEC-II)	From Basket	02	30
		(VEC-II)	FSRCE (CBPR)	02	30
		Generic IKS	Introduction to Indian	02	60
		Total C	Knowledge System Credits	22	
	Total	l Credits (Semest			44
	1000			•	

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Faculty of Science & Technology

	Programme Outcomes (POs) for B.Sc. Programme				
PO No	Upon completion of this programme, the students will be able to -				
PO 1	Prepare the students with the skills, ethics, aptitude and human values of practicing				
	the science in day-to-day life				
PO 2	Promote the interdisciplinary research in biotechnology for tackling the future				
	problems threatening the society				
PO 3	Equip the students with the abilities required to attain self-sufficiency and life				
	sustainability by imparting entrepreneurial skills				
PO 4	Design process equipment, plants, biosensors and recombinant molecules for				
	biotechnological and allied processes				
PO 5	Identify measures for energy, environment, health, safety and society following				
	ethical principles and apply the knowledge of basic science and engineering to solve				
	complex biotechn <mark>olog</mark> ical problems				
PO 6	Isolate, purify and characterize biological samples using sophisticated analytical				
	experimental techniques				
PO 7	Apply modern software tools including prediction and modeling methods on				
	biological databases to identify issues in biomedical problems				
PO 8	Assess personal, product and environmental safety, intellectual property and social				
	responsibilities related to modern biotechnological research and development				

शिव छत्रपती शिक्षण संस्था लातुर

१। आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Semester - I

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

हिन्द प्रकारने विश्ववन संस्था प्रमुख

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: DSC-I

Course Title: Cell Biology Course Code: 101BIO1101

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

LO 1. To understand basic of cell biology and its applications.

LO 2. To study Cell organelles and its Function

LO 3. To understand transport mechanism in and out of cell

LO 4. To understand cell cycle and its regulation events

LO 5. To understand the concept of types of cells.

LO 6. To study the concept of cytoskeleton.

LO 7. To acquire the knowledge about cell signaling.

LO 8. To acquire the knowledge about active transport.

Course Outcomes:

After completion of the course, the student will be able to-

- CO 1. Discuss origin and evolution of cells
- CO 2. Describe physico-chemical composition of organelles and their functional organization.
- CO 3. Explain transport mechanism of cells
- CO 4. Elucidate significance of cell-cell communication
- CO 5. Explain the knowledge about origin of mitochondria.
- CO 6. Elucidate the concept of extracellular matrix.
- CO 7. Understand the role of high energy compounds.
- CO 8. Understand the basic concept of stem cell.

Unit No.	Title of Unit & Contents	Hrs.
I	Introduction to Cell biology	07
	1. Cell – Shapes, morphology, Cell theory.	
	2. Origin of life –Stanley miller Experiment.	
	3. Origin of Mitochondria, Chloroplast (Endosymbiotic theory).	

Unit No.	Title of Unit & Contents	Hrs.
	4. Introduction to prokaryotic and eukaryotic cells.	
	5. Microscopic techniques in cell biology.	
	Unit Outcomes:	
	UO 1. Discuss origin and evolution of cells.	
	UO 2. Explain difference between prokaryotic and eukaryotic cell.	
II	Cell organelles and Cytoskeleton	15
	Cell wall and cell membrane.	
	2. Endoplasmic reticulum and Golgi body.	
	3. Mitochondria and Chloroplast.	
	4. Nucleus.	
	5. Microbodies: Glyoxysome, Peroxisome, Melanosome, lysosomes, vacuoles.	
	6. Cytoskeleton.	
	7. Extracellular matrix.	
	8. Cell junctions.	
	Unit Outcome:	
	UO 1. Describe physico-chemical composition of organelles and their	
	functional organization.	
	UO 2. Explain cytoskeleton and cell junction.	
III	Membrane Transport	13
	1. Transport across cell membrane, simple diffusion, passive transport, active	
	transport, Na/K ion channel, vesicular transport.	
	2. concept of ETC Membrane.	
	3. Role of high energy compound.	
	4. Membrane potential, Depolarization, hyperpolarization of membrane	
	(neuronal).	
	5. Generation of action potential.	
	6. Types of biopotentials. Biopotential measurement instrument.	
	Unit Outcomes:	
	UO 1. Explain transport mechanism of cells	
	UO 2. Student will be able to study action potential in cell	
IV	Cell cycle and Cell-cell communication	10
	The mechanism of cell division	
	 The mechanism of cell division Cell cycle and its regulation, 	

Learning Resources:

- 1. Molecular Cell Biology, Lodish et al, Scientific American Book, 2004.
- 2. Manual of Laboratory Expts. in Cell Biol, Edward Gasque, W. C. Wilson Pub, 2005.
- 3. The Biology of the Cell, Alberts et al 5th Edition, 2002.
- 4. A Molecular Approach the Cell, Cooper & Hausmann —4th Edition, 2004.
- 5. Cell and Molecular Biology, Gerald Karp 4th Edition, 2007.
- 6. Medical Physiology, Guyton & Hall, Eleventh Edition-Elsevier, 2009.
- 7. Cell Biology A Short Course, Stephen R. Bolsover Wiley Liss A JOHN WILEY & SONS, INC., PUBLICATION, 2004.
- 8. Cell biology, Veer Bala Publication Rastogi, MedTech Science Press 2021.
- 9. Trends in Cell Biology (Magazine), IlariaCarnevale, Editor-in-chief, 2020.
- 10. Nature cell biology, ISSN: 1465-7392, 2010.

कित प्रकृति विकृत संदय प्रदूर से सामेश्वरण क्योंकि। स्थापना – १९७०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: Lab Course

Course Title: Lab Course –I (Based on DSC-I)

Course Code: 101BIO1103

Credits: 01 Max. Marks: 50 Hours: 30

Learning Objectives

LO 1. To study cell diversity.

LO 2. To design experiments on karyotyping

LO 3. To study different stages of cell cycle

LO 4. To provide hands-on Cell separation techniques

LO 5. To study the staining technique of lipids.

LO 6. To design experiments on cell lysis- methodology.

Course outcomes

After completion of the course, the student will be able to-

- CO 1. Perform separation of subcellular components of cells.
- CO 2. Identify and describe the cellular structure of organs and tissues from prepared slides, and outline the principles of histochemical staining.
- CO 3. Interpret the chromosome structure, cell division events in cells.
- CO 4. Explain membrane transport practically.

Practical No.	Unit
1	To Study Cell Diversity
2	To study Permeability Change in erythrocyte using Osmosis
3	Separation of cells using sedimentation and velocity Centrifugation
4	Staining of mitochondria
5	Staining of Vacuoles
6	Staining of Glycogen bodies
7	Staining of Lipids
8	Study of Karyotyping

9	Study of Mitosis using Onion Root
10	Study of Meiosis Using Onion Flower
11	Cell harvesting and cell lysis- methodology
12	Study of Tissue by Microtomy
13	Isolation of Chloroplast

N.B.: Any Ten Practical from above.

10

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: DSC-II

Course Title: Introduction to Microbiology

Course Code: 101BIO1102

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO 1. To learn and understand the contributions of various scientists in microbiology
- LO 2. To learn structure and function of bacterial cell
- LO 3. To understand and apply pure culture technique for isolation of microorganisms
- LO 4. To understand different methods of sterilization of culture media
- LO 5. To observe, understand and measure microbial growth
- LO 6. To understand the mechanism and function of staining used in microbiology
- LO 7. To understand the different types of culture media, direct and indirect methods of quantification of microorganisms
- LO 8. To understand the mechanism of external environmental factors on growth of microorganism

Course Outcomes:

After completion of the course, the student will be able to-

- CO 1. Interpret the structural similarities and differences among microorganisms and the unique structure/function relationships of prokaryotic cells
- CO 2. Explain the diversity of microorganism in special reference to bacteria
- CO 3. Demonstrate the proper use of a microscope to observe microorganisms and report observed characteristics
- CO 4. Describe aseptic technique and be able to perform routine culture handling tasks, safely and effectively
- CO 5. Perform preparation of culture media for microbial growth.
- CO 6. Describe effect of different environmental factors on microbial growth.

Unit No.	Title of Unit & Contents	Hrs.
I	History and Overview of Microbiology	11
	1. Biogenesis and abiogenesis, Contributions of Redi, Spallanzani,	
	Needham, Tyndall, Joseph Lister, Pasteur, Koch [Germ Theory].	

Unit No.	Title of Unit & Contents	Hrs.
	2. Scope of Microbiology.	
	3. General classification of microorganisms as Bacteria, Fungi, Algae,	
	Protozoa.	
	4. Structure and organization of bacteria: Capsule, cell wall, cytoplasmic	
	membrane, nucleoid, Ribosome, endospores, cytoplasmic inclusions,	
	flagellum, Pilli, protoplast and spheroplast.	
	Unit Outcomes:	
	UO 3. Interpret the structural similarities and differences among	
	microorganisms and the unique structure/function relationships of	
	prokaryotic cells.	
	UO 4. Understand the types of micro-organisms.	
II	Microbial Media and Sterilization Techniques	12
	1. Major and minor media comp <mark>onents.</mark>	
	2. Types of media Viz. Basal, Selective, Differential and Enrichment	
	media. Mode of n <mark>utrit</mark> ion.	
	3. Definition of sterilization, dry and moist heat, pasteurization,	
	Tyndallization, radiation, ultrasonication, filtration.	
	4. Physical and Chemical methods of sterilization; disinfection	
	sanitization, antisepsis sterilant and fumigation.	
	5. Determination of phenol coefficient of disinfectant.	
	Unit Outcome:	
	UO 3. Explain the diversity of microorganism in special reference to	
	bacteria.	
	UO 4. Explain the methods of sterilizations.	
III	Isolation and Identification Techniques	13
	1. Isolation, cultivation and identification techniques for	
	microorganisms, aerobic and anaerobic cultivation.	
	2. Biochemical methods for identification, pure culture techniques and	
	preservation of pure cultures.	
	3. Definition of auxochrome, chromophores.	
	4. Classification of stains, Theories of staining.	
	5. Mechanism of gram staining, acid fast staining, negative staining,	
	capsule staining, flagella staining, endospore staining.	
	Unit Outcomes:	
	UO 3. Demonstrate the proper use of a microscope to observe	

Unit No.	Title of Unit & Contents	Hrs.
	microorganisms and report observed characteristics.	
	UO 4. Elaborate their concepts about isolation of microbes from	
	different forms.	
IV	Bacterial Growth	09
	1. Different types of bacterial culture (Batch, Synchronous, Diauxic,	
	Axenic).	
	2. Definition and brief description. Growth Curve, Calculation of	
	duration of Phases and gener <mark>ation t</mark> ime, Growth yields.	
	3. Methods of growth determination.	
	4. Environmental factors affecting growth - temperature, pH, osmotic	
	pressure and nutrient conce <mark>ntration per ce</mark> ll.	
	Unit Outcomes:	
	UO 3. Master aseptic technique and be able to perform routine culture	
	handling tasks safely and <mark>effectively.</mark>	
	UO 4. Understand the concepts of bacterial culture.	

Learning Resources:

- 1. Elementary Microbiology, H. A. Modi, NadiadAktaPrakashan, Volume I and II, 2002.
- 2. General Microbiology- Powar and Daginawala- Himalya Publication, 2019.
- 3. Fundamental Principles of Bacteriology- A.J.Salle- TATA-McGraw Hill publication, 1984.
- 4. General Microbiology-Pelczar- Tata McGraw Hill publication Vth Edition, 2001.
- 5. Text-book of Microbiology- Anantnarayan, C.K. Jayram, Panikar, Orient Longman, Universities Press (India) Pvt. Ltd.; Xth edition, 2017.
- 6. General Microbiology- Stanier R.-. Macmillan Press Ltd Vth Edition, 1986.
- 7. Text Book of Microbiology- R.C. Dubey- S. Chand Publications; Fourth edition, 2013.
- 8. Microbiology: A Laboratory Manual, Cappucino J and Sherman N., 9th edition. Pearson Education limited 2010.
- 9. Microbiology Paperback, by P. D. Sharma, Rastogi Publication, 4th Edition 2010.
- 10. Textbooks of Microbiology and Immunology by Subhash Chandra Parija, ELSEVIER, 2nd Edition, 2012

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

कित करने विक्रम संस्था वार्ष्ट्र में बार्क्ट्र करने क्वीमा स्थापना – १९७०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: Lab Course

Course Title: Lab Course –II (Based on DSC-II)

Course Code: 101BIO1104

Credits: 01 Max. Marks: 50 Hours: 30

Learning Objectives

LO 1. To educate students in a variety of important microbiological disciplines

- LO 2. To promote and develop skills in the use of tools, technologies and methods common to microbiology.
- LO 3. To understand use of different staining methods in differentiation of Bacteria.
- LO 4. To understand pure culture techniques and media required for microbial growth.
- LO 5. To educate the student in various sterilization techniques used in laboratory and media preparation.
- LO 6. To study and understand the microbial world and its diversity.

Course outcomes

After completion of the course, the student will be able to-

- CO 1. Isolate and enumerate bacteria.
- CO 2. Identify microbes using microscopic and biochemical tests.
- CO 3. Determine, interpret and discuss the growth kinetics of microbes growing in batch culture.
- CO 4. Act in accordance with safe laboratory practice in terms of conduct, attire, risk minimization and appropriate waste disposal.

Practical No.	Unit
1	Introduction of Microbiology laboratory
2	Study of Microscope
3	Sterilization techniques
4	Preparation of culture media
5	Isolation of bacteria by Streak plate method
6	Isolation of bacteria by spread plate method

7	Isolation of bacteria by pour plate method
8	Isolation of bacteria by serial dilution method
9	Identification of microorganisms from the habitats by simple staining method
10	Identification of microorganisms from the habitats by differential staining method
11	Identification of microorganisms from the habitats by acid fast staining method
12	Identification of microorganisms from the habitats by capsule staining method
13	Identification of microorganisms from the habitats by spore staining and motility
14	Observation of morphology - shape and arrangement of cells
15	Methods of inoculation of different microbes in selective media
16	Microscopic measurements, micrometer (ocular and stage), hemocytometer
17	Sampling and quantification of microorganisms from air
18	Sampling and quantification of microorganisms from soil
19	Sampling and quantification of microorganisms from water

N.B.: Any Ten practical from above.

Berowell Been non one I sade wan volle II Religion

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: VSC-I

Course Title: Bioinstrumentation-I

Course Code: 101BIO1501

Credits: 02 (01+01) Max. Marks: 50 Lectures: 45 Hrs.

(15 Th + 30 P)

Learning Objectives:

- LO 1. To understand the analytical techniques and equipment used in biological science.
- LO 2. To understand the basic principle and applications of microscopy and centrifugation.
- LO 3. To acquire knowledge on the Chromatographic methods for the separation of biological molecules.
- LO 4. To learn care and safety during handling of laboratory equipment's.
- LO 5. To learn scientific calculations related with measurements, microscopy, centrifugation and chromatography.
- LO 6. To understand good laboratory practices in practical related with biological studies.
- LO 7. To learn different applications of bioinstrumentation in biological research and industries.

Course Outcomes:

After completion of the course, the student will be able to-

- CO 1. Handle successfully all measurement tools in solution preparation.
- CO 2. Explain the use and applications of microscopy.
- CO 3. Explain the use and applications of centrifugation.
- CO 4. Perform paper chromatography and TLC for the separation of biomolecules.
- CO 5. Prepare Different Solutions
- CO 6. Understand calibrations of tools and instruments.
- CO 7. Expertise in handling above biological techniques in their research.

Unit No.	Title of Unit & Contents	Hrs.
I	Fundamental Instrumentation used in Biological research	04
	1. Tools and Instruments for measurements: Pipette, measuring cylinders,	
	Micropipette, Weighing balance etc.	
	2. Principles and working of pH meter and Colorimeter	

	3. Other tools/instruments: Hot water bath, Hot plate, heating mantle,	
	distillation unit, vortex mixer, homogenizer etc.	
	Unit Outcomes:	
	UO 1. Understand the principle of basic instrumentation	
	UO 2. Understand functions and working of laboratory tools and techniques	
	UO 3. Understand calibration and maintenance of basic instrumentation.	
TT	74.	0.7
II	Microscopy	05
	1. Light microscopy: Simple microscope, compound microscope, Dark field	
	microscope, Inverted light microscope.	
	2. Fluorescence microscope 3. Electron microscopy: TEM, SEM	
	3. Electron microscopy: TEM, SEM Unit Outcomes:	_
	UO 1. Acquaint knowledge of Microscopy.	
	UO 2. Understand the principle and working of Microscopy.	
	UO 3. Understand applications of advanced microscopy in life sciences.	0.5
III	Centrifugation	03
	1. Centrifuge – principle, working and applications.	
	2. Care and safety aspects of centrifuges	
	3. Analytical ultracentrifugation	
	4. Differential and Density gradient centrifugation	
	Unit Outcome:	
	UO 1. Augment the knowledge of different Centrifugation techniques	
	UO 2. Understand applications of Centrifugation.	
	UO 3. Aware about care and handling of different centrifuge machines.	
	। साधाजा संस्था	
IV`	Chromatography	03
	1. Principle of Chromatography	
	2. Principle and applications of paper and TLC chromatography	
	3. Ion exchange chromatography	
	Unit Outcomes: Shahu Mahavidyalaya,	
	UO 1. Understand basic principles of chromatography.	
	UO 2. Acquaint significance of chromatography in biological studies.	
	UO 3. Understand applications of different chromatography types in their	
	biological studies.	
V	Practicals (Included in above 04 units)	30

- 1. Calibration and handling of measurement tools and weighing balance.
- 2. Calibration and working applications of PH meter.
- 3. Calibration and practical handling and applications of colorimeter and spectrophotometer.
- 4. Calibration and Working of Hot water bath, Hot plate, heating mantle, vortex mixer, homogenizer etc.
- 5. To learn the process of distillation of water by using distillation unit.
- 6. A study of components and their functions of simple and compound microscope.
- 7. Prepare the specimen by using temporary mounting methods for compound microscope.
- 8. Prepare the specimen by using dehydration, staining and clearing by using permanent mounting of plant specimens.
- 9. Problems on Microscopy.
- 10. Demonstration of different types of centrifugation techniques.
- 11. Separation of Biomolecules by Centrifugation
- 12. Problems on Centrifugation.
- 13. To separate the plant leaf homogenate pigments by using paper chromatography technique.
- 14. To separate the amino acids by using thin layer chromatography technique.
- 15. To purify the enzyme from crude preparation by using ion exchange chromatography.

Learning Resources:

- 1. Biophysical Chemistry by Upadhyay, Upadhyay and Nath, Himalaya Pub. House, Delhi, 2016.
- 2. Practical Biochemistry- principles and techniques; (5th edition), Keith Wilson and John Walker. Cambridge University press, London, UK, 2000.
- 3. Principles and Techniques of Biochemistry and Molecular Biology (6th edition), Keith Wilson and John Walker. Cambridge University press, London, UK, 2005.
- 4. Essentials of Biophysics (2nd edition) P.Narayanan, New Age International Publications, 2007.
- 5. Biophysics by G.R. Chatwal, Himalaya Publishing House, 2011.
- 6. Biophysics by Mohan P Arora, Himalaya Publishing House, 2020.

- 7. Physical Biochemistry: Applications to Biochemistry and Molecular Biology by Freilder, D. Freeman, San. Francisco, 1976.
- 8. Biochemical Techniques: Theory and Practice by Robyt, John F.; White, Bernard J. Waveland Press, Inc., U.S.A. Published: 1990.
- 9. Bioinstrumentation by Webster, Wiley, 2007.
- 10. Bioinstrumentation by l. Veerakumari, MJP Publisher, 2019.

Semester - II

।। आरोह तमसो ज्योतिः।।

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

वित्र प्रकर्ण विक्रम संस्था व स्थापना न्योंक ॥ स्थापना - १९७०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: DSC-III

Course Title: Biochemistry
Course Code: 101BIO2101

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO 1 To understand the different forms of DNA
- LO 2 To understand the basic concepts in formation and function of nucleic acids.
- LO 3 To deliberate the role of carbohydrates.
- LO 4 To describe the structures of saturated and unsaturated fatty acids.
- LO 5 To acquaint the knowledge of amino acids
- LO 6 To comprehend the significance of domains in protein function and how they have arisen.
- LO 7 To explain classification of vitamins.
- LO 8 To explain the role of minerals.

Course Outcomes:

After completion of course, the student will be able to-

- CO 1 Understand the properties of nucleotides, how they contribute to secondary and tertiary structures of nucleic acids at the molecular level.
- CO 2 Understand the role of denaturation and renaturation of DNA.
- CO 3 Acquaint the knowledge of carbohydrates.
- CO 4 Familiarize with physical and biological properties of lipids.
- CO 5 Understand that structure and classification of amino acids.
- CO 6 Comprehend the classification of proteins
- CO 7 Identify the deficiency and toxicity symptoms of each micronutrient.
- CO 8 Learn the role of minerals.

Unit No.	Title of Unit & Contents	Hrs.
I	Nucleic acids	07
	Nucleic acids: Discovery and historical aspects	
	2. Nucleosides, nucleotides, Polynucleotides.	
	3. DNA and its different forms [A, B, C, D, E and Z].	
	4. RNA and its types, mRNA, tRNA, SiRNA, microRNA with function	

15
15
15
15
1
,
ı
,
ı
13
1
_
<u> </u>
· · · · · · · · · · · · · · · · · · ·

Unit No.	Title of Unit & Contents	Hrs.
	1. Introduction of vitamins	
	2. Water soluble vitamins (Vit-B1, B2, B3, B5, B6, B7, B9, B12 & Vit-C).	
	3. Fat soluble vitamins (Vit-A, D, E & K).	
	4. Minerals: Introduction of Macro (Na, K, Ca, Mg, P) minerals, micro	
	minerals (Fe, I, F, Zn, Cu, Co, Se, Cr. Mn, Mo, Ni, Sn, Si, V),	
	5. Trace elements (Pb, Hg, B, Bo, Al).	
	6. Functions of micro, macro & trace elements.	
	Unit Outcomes:	
	UO 5. Develop the ability to understand both deficiency and toxicity symptoms	
	of each micronutrient.	
	UO 6. Understand classification of vitamins.	

Learning Resources:

- 1. Outlines of Biochemistry Conn and Stumpf, 5th Edition, Wiley Publication, 2006.
- 2. Principles of Biochemistry, JefforyZubey, WCB Publishers, 1995.
- 3. Biochemistry, L. Stryer, WH Freeman Publication, 2015.
- 4. Principles of biochemistry, Lehninger, Nelson, Cox., CBS Publishers,7th ed. 2017.
- 5. Principles of Biochemistry, Geoffrey Zubay, McGraw Hill Publishers, 1995.
- 6. Fundamentals of Biochemistry, 5th Edition Voet et al., Wiley Publication, 2016.
- 7. Biochemistry, Donald J. Voet and Judith G. Voet 3rd Edition, John Wiley and Sons publication, 2004.
- 8. Biomolecules And Cell Biology, P.K. Gupta, Rastogi Publication first edition, 2018.
- 9. Chemistry Of Biomolecules, S.P. Bhutani, ANE Books, 2009.
- 10. Textbook of Medical Biochemistry, Dr (Brig) MN Chatterjee and Rana Shinde, Eighth Edition, Jaypee Brothers Medical Publishers, 2012.

Ber upvillegen item (Seen item) It endy room valle) #2014-1- ? ? %0

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: Lab Course

Course Title: Lab Course –III (Based on DSC-III)

Course Code:101BIO2103

Credits: 01 Max. Marks: 50 Hours: 30

Leaning Objectives

LO 1 To develop skill and proficiency in preparation of laboratory reagents, normal and molar solutions.

- LO 2 To study the preparation of buffer
- LO 3 To understand quality and purity of lipids.
- LO 4 To understand the various methods of qualitative estimation of different biomolecules.
- LO 5 To understand the various methods of quantitative estimation of different biomolecules.

Course outcomes

After completion of course, the student will be able to-

- CO 1 Develop skills to estimate concentration of proteins, lipids, nucleic acids, and carbohydrates
- CO 2 Determine presence of biomolecules like carbohydrates, proteins, lipids, etc. in known and unknown samples.
- CO 3 Acquire training to determine saponification value and iodine value of oil and different types of fats.
- CO 4 Prepare different standard solutions, buffer etc.

Practical No.	Unit
1	Preparation of solutions, buffer sensitivity, specificity accuracy, Molarities, molality,
	normality. Shahu Mahavidyalaya
2	Preparation of acetate buffer.
3	Preparation of phosphate buffer.
4	Preparation of citrate buffer.
5	Titration of Oxalic acid and amino acid
6	Qualitative test for carbohydrates and lipids.

7	Determination of Acid value of fat
8	Determination of Saponification of Fat
9	Determination of iodine number of oil.
10	Estimation of Amino acids by Ninhydrin method
11	Estimation of Protein by Biuret and Lowry Method
12	Estimation of total sugar by anthrone method.
13	Estimation of Total Reducing Sugar by DNSA method
14	Estimation of DNA by DPA method
15	Estimation of RNA by Orcinol Method
16	Estimation of Ascorbic Acid by volumetric method.
17	Mohr's salt Titration with Potassium Dichromate.

N.B.: Any Ten Practicals from above.

किंद्र राज्ये । विकास संस्था तरहा । त सार्वेह सार्वेह । उद्योगना = १९५०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: DSC-IV
Course Title: Genetics

Course Code: 101BIO2102

Credits: 03 Max. Marks: 75 Lectures: 45 Hrs.

Learning Objectives:

- LO 1 To understand the basics of genetics behind heredity and variations amongst living organisms.
- LO 2 To know recent trends in genetics and present applications.
- LO 3 To understanding the physical basis of cytogenetics.
- LO 4 To explain types and mechanism of mutations.
- LO 5 To understand the mechanism of microbial recombination.
- LO 6 To know the recent trends and applications of genetics for human welfare.
- LO 7 To understand genetics in population and evolution of living organisms.
- LO 8 To develop logical thinking in solving genetics problems.

Course outcomes

After completion of course, the student will be able to-

- CO 1. Acquaint the basic concepts and applications of classical genetics.
- CO 2. Understand the mechanism of gene interaction and sex determination.
- CO 3. Familiarize with structural and functional aspects of chromosome.
- CO 4. Explain the perception of extra-chromosomal inheritance and chromosomal mapping.
- CO 5. Understand the role of mutations and mutagens.
- CO 6. Gain the knowledge of microbial genetic recombination.
- CO 7. Understand Hardy Weinberg principle and its relevance to population genetics.
- CO 8. Apply quantitative genetics approaches in agriculture.

Unit No.	Title of Unit & Contents	Hrs.
I	Classical Genetics	14
	History of Genetics	
	2. Heredity and Environment: Phenotype, Genotype, Heredity,	
	variation, Pure lines and Inbred lines.	
	3. Biography of Mendel and his experiments on pea plants.	

Unit No.	Title of Unit & Contents	Hrs.
	4. Principles of Mendel: Monohybrid cross, Dihybrid cross, back	
	cross and Test cross.	
	5. Multiple Alleles: ABO blood groups and Rh factor in Human,	
	Gene Interactions.	
	6. Intra-allelic interactions: Incomplete inheritance and	
	Codominance	
	7. Inter allelic interactions: Complementary gene Supplementary	
	gene, Epistasis, Duplicat <mark>e gene</mark> .	
	8. Sex influenced and sex- <mark>limited</mark> inheritance.	
	9. Sex determination in a <mark>nimals an</mark> d plants.	
	Unit Outcomes:	
	UO 1 Understanding fundamental concepts of classical genetics.	
	UO 2 Comprehend sex determination and gene interactions	
II	Cytogenetics	13
	Chromatin structure and Chromosome theory of inheritance.	
	2. Structure of Eukaryotic Chromosome.	
	3. Nucleosome model, Karyotype and Ideogram.	
	4. Linkages: Types of linkages, Factors affecting linkages and	
	Significance of linkages.	
	5. Crossing over: Types and Mechanism of crossing over,	
	interference and coincidence.	
	6. Chromosomal Mapping.	
	7. Sex linkages: Examples Drosophila and Man.	
	8. Extra-chromosomal Inheritance: Characteristic features,	
	Mitochondrial, Chloroplast, Kappa articles in Paramecium, Shell	
	coiling in snail.	
	9. Pedigree analysis in human.	
	Unit Outcomes:	
	UO 1 Understanding physical basis of Cytogenetics	
	UO 2 Understand mechanism of extra-chromosomal inheritance.	
III	Mutation and Microbial Genetics	10
	1. Fine structure of the Gene- Cistron, muton and recon.	
	2. Mutation: Physical and chemical mutagen, Types of Mutation.	
	3. Chromosomal Mutation: Structural and Numerical.	
	4. Microbial genetics: Conjugation and conjugation mapping,	

Unit No.	Title of Unit & Contents	Hrs.
	Transformation and Transformation mapping, Transduction and	
	Transduction mapping.	
	Unit Outcomes:	
	UO 1 Explain types and mechanism of Mutations.	
	UO 2 Understand mechanism of microbial recombination.	
IV	Population genetics and quantitative genetics	08
	1. Gene and genotype frequency, Hardy-Weinberg law and equation and	
	its application in the study of population genetics.	
	2. Quantitative genetics, application of quantitative genetics in	
	agriculture.	
	Unit Outcomes:	
	UO 1 Know the recent trends and applications of genetics for human	
	welfare.	
	UO 2 Understand genetics in population and evolution of living	
	organisms.	

Learning Resources:

- 1. Principles of Genetics, Robert H. Tamarin. Tata-McGraw Hill, Seventh Edition 2002.
- 2. Genetics, Principles and Analysis, Daniel Hartl & E.W. Jones, Jones & Bartlett Publication. Fourth Edition, 1998.
- 3. The Science of Genetics, Atherly, A. G. Girton, J. R & MC Donald, J. F., Saunders College Publications / Harcourt Brace, Revised edition, 1999.
- 4. Genetics, M.W. Strick Berger, Macmillan Publications New York, Second edition 1976.
- 5. Principles of Genetics, Snustad D P, M J Simmons and J P Jenkins, John Wiley and Sons, INC.Seventh edition,2015.
- 6. An introduction to genetic analysis, Griffiths A J F, H. J. Muller, D. T. Suzuki, R. C. Lewontin and W. M. Gelbart, W. H. Greeman. New York, Twelth edition, 2020.
- 7. i Genetics A molecular approach, Peter J Russell. Pearson publication, Third edition, 2016.
- 8. Concepts of Genetics, Klug, Cummings and Spencer, Pearson Publication, Tenth edition, 2016.
- 9. Genetics: A conceptual approach, Benjamin Pierce, W.H. Freeman publication, Sixth edition, 2016.
- 10. Genetics, Veer BalaRastogi, Medtech Publication, Fourth edition, 2019.
- 11. Principles of Genetics, Gardner, Simmons, Snutad, Wiley Publication, Eighth edition, 2006.
- 12. Genetics, PK Gupta, Rastogi Publication, Fifth edition, 2018.

किन एकपरी विकाय संस्था संदर्भ कामी प्राचित्र।

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: Lab Course

Course Title: Lab Course –IV (Based on DSC-IV)

Course Code: 101BIO2104

Credits: 01 Max. Marks: 50 Hours: 30

Learning Objectives

- LO 1 To understand basics of Mendelian inheritance of one and more than one characters through solving the problems.
- LO 2 To understand phenomenon of modifications in Mendelian inheritance and non-Mendelian inheritance.
- LO 3 To apply statistics in solving genetics problems.
- LO 4 To understand genetics phenomenon in human, population and evolution.
- LO 5 To learn the role of physical and chemical mutagens.

Course Outcomes

After completion of the course, the student will be able to-

- CO 1 Understand and apply Mendel's principles in solving problems
- CO 2 Recognize and analyze different types of gene interaction.
- CO 3 Interpret and draw conclusions based on the results obtained from statistical analyses in genetics.
- CO 4 Understand the principles of pedigree analysis and interpret pedigrees.
- CO 5 Solve problems related to the calculation of allele and genotype frequencies in populations.
- CO 6 Apply blood group inheritance principles to study and interpret human blood types.
- CO 7 Explore and analyze the diversity of human, animal, and plant traits.

Practical No.	Unit
1	Problems based on monohybrid cross.
2	Problems based on dihybrid cross.
3	Problems based on trihybrid cross
4	Problems based on interaction of genes
5	Problems based on application of probability, Student's T test and Chi square test in

	genetics.
6	Problems based on pedigree analysis.
7	Problems based on Chromosome mapping.
8	Problems based on Hardy-Weinberg equilibrium.
9	To study the human blood group by using a given blood sample.
10	Analysis and interpretation karyotype and ideogram by using charts / diagrams.
11	Study of Human traits, Animal traits and plant traits for its diversity in phenotype.
12	Study of effect of physical mutagens
13	Study of effect of chemical mutagens

N.B.: Any Ten Practicals from above.

कित जरूरी कित वस्त्र करू य साहे करेडीम स्थापना - १९६०

Shiv Chhatrapati Shikshan Sanstha's

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Department of Biotechnology

Course Type: VSC-II

Course Title: Bioinstrumentation-II

Course Code: 101BIO2501

Credits: 02 (01+01) Max. Marks: 50 Lectures: 45 Hrs.

Learning Objectives:

- LO 1 To explain the fundamental principles underlying each technique.
- LO 2 To understand the principle and working of electrophoresis techniques in separation of biomolecules.
- LO 3 To understand application of spectroscopy in the study of biomolecules.
- LO 4 To understand significance of advanced chromatography in biological studies.
- LO 5 To understand basics of Radioactivity and radioactivity techniques in biological studies.
- LO 6 To compare and contrast the various techniques in terms of their applications, advantages, limitations, and suitability for different biomolecular analyses.
- LO 7 To explore the mechanisms and applications of electrophoresis and chromatography in separating and analyzing biomolecules
- LO 8 To discuss the quantitative aspects of these techniques, including calibration methods, standard curves, and the interpretation of spectra or chromatograms for biomolecule quantification.

Course Outcomes:

After completion of course, the student will be able to-

- CO 1 Able to prepare buffers and supporting media for electrophoresis
- CO 2 Understand the separation of nucleic acids and proteins by electrophoresis.
- CO 3 Explain the working and applications of affinity, gel, gas chromatography.
- CO 4 Understand the uses and applications of radioactivity in biological sciences.
- CO 5 Ability to interpret and critically analyze data generated from various bioinstrumentation techniques, and effectively communicate findings through reports and presentations.
- CO 6 Develop problem-solving skills by applying theoretical knowledge to troubleshoot and optimize bioinstrumentation protocols.
- CO 7 Integrate multiple bioinstrumentation techniques to solve complex biochemical problems.

	Title of Unit & Contents					
Unit No.						
I	Electrophoresis	04				
	1. General Principles					
	2. Support media and Buffers					
	3. Electrophoresis of Nucleic acid – Agarose gel electrophoresis of nucleic acid					
	4. Electrophoresis of Proteins- PAGE					
	5. Capillary electrophoresis.					
	Unit Outcomes:	-				
	UO 4. Prepare buffers and other accessory requirements in electrophoresis.					
	UO 5. Understand principles and working of different electrophoresis in biological					
	studies.					
		0.				
II	Spectroscopy	05				
	4. Introduction: Basic principles and applications					
	5. Ultraviolet and Visible light spectroscopy					
	6. Infrared and Raman Spectroscopy					
	7. Fluorescence spectroscopy					
	Unit Outcomes:					
	UO 1. Understand basic principles of spectroscopic Studies.					
	UO 2. Distinguish the application of spectroscopy in biology.					
III	Advanced Chromatography Techniques	03				
	5. Affinity chromatography					
	6. Gel filtration chromatography					
	7. Gas chromatography Unit Outcome:	1				
	UO 1. Understand advanced chromatographic techniques in biological					
	studies.					
	UO 2. Understand future applications of chromatography in biological					
	research.					
IV`	Radioisotope Techniques	03				
	Detection and measurement of radioactivity	0.5				
	5. Other practical aspects of counting radioactivity and Analysis of Data					
	6. Safety aspects.					
	Unit Outcomes:	-				
	UO 1. Understand radioisotopes and its applications in biology.					
	UO 2. Acquaint the practical aspects of radioactivity and data analysis.					

V	Practicals (Included in above 04 units)	30				
	A study of Good laboratory practices in Biochemistry and molecular biology					
	laboratories.					
	2. To resolve the given DNA sample by using agarose gel electrophoresis.					
	3. To resolve the given mixture of proteins by means of SDS PAGE.					
	4. To Study Lamberts Beers Law					
	5. Demonstration of IR spectroscopy for the study of plant secondary					
	metabolites.					
	6. Problems on Spectroscopy					
	7. To carry out desalting of the given protein by using column chromatography					
	technique.					
	8. A virtual study of affinity and Gel Permeation chromatography by using					
	animations and other stud <mark>y materials.</mark>					
	9. A virtual study of Gas chromatography by using animations and other study					
	materials.					
	10. To solve the problems based on Radioactivity techniques					
	11. Demonstration of Geiger Muller Counter					

Learning Resources:

- 1. Biophysical Chemistry by Upadhyay, Upadhyay and Nath, Himalaya Pub. House, Delhi,2016.
- 2. Practical Biochemistry- principles and techniques; (5th edition), Keith Wilson and John Walker. Cambridge University press, London, UK,2000.
- 3. Principles and Techniques of Biochemistry and Molecular Biology (6th edition), Keith Wilson and John Walker. Cambridge University press, London, UK,2005.
- 4. Essentials of Biophysics (2nd edition)-P.Narayanan,New Age International Publications,2007.
- 5. Biophysics by G.R.Chatwal ,Himalaya Publishing House, 2011.
- 6. Biophysics by Mohan P Arora, Himalaya Publishing House, 2020.
- 7. Physical Biochemistry: Applications to Biochemistry and Molecular Biology by Freilder, D. Freeman, San. Francisco, 1976.
- 8. Biochemical Techniques: Theory and Practice by Robyt, John F.; White, Bernard J. Waveland Press, Inc., U.S.A. Published: 1990.
- 9. Bioinstrumentation by Webster, Wiley, 2007.
- 10. Bioinstrumentation by 1. Veerakumari, MJP Publisher, 2019.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

UG First Year

Basket I: Generic/Open Elective (GE/OE)

(GEs offered to the Science & Technology students in Sem.-I/II)

Sr.	BoS Proposing	Code	Course Title	Credits	Hrs.
No.	GE/OE				
1	Physics	101PHY1 <mark>401</mark>	Energy Sources	04	60
2	English	101EN <mark>G1403</mark>	Developing Interpersonal	04	60
			Skills		
3	Chemistry	101CH <mark>E1401</mark>	Medicines for Daily Life	04	60
4	Commerce	101MA <mark>E1401</mark>	Fundamentals of Statistics	04	60
5	Commerce	101BAI <mark>1401</mark>	Personal Financial	04	60
			Management		
6	Political Science	101POL1401	Human Rights	04	60
7	Music	101MUS1401	Indian Vocal Classical &	04	60
	/		Light Music		
8	NCC Studies	101NCC1401	Introduction to NCC	04	60
9	Sports	101SPO1401	Counseling and	04	60
			Psychotherapy	•	
10	Mathematics	101MAT1401	Fundamentals of	04	60
			Mathematics		

Note: Student can choose any one GE from the basket.

शि आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

UG First Year

Basket II: Skill Enhancement Courses (SEC)

(SEC offered to the Science & Technology students in Sem.-I/II)

Sr. No.	BoS Proposing SEC	Code	Course Title	Credits	Hrs.
1	Computer Science	101COS1602	Cyber Security	02	30-45
2	Computer Science	101COS1601	Data Analysis and Computer Application	02	30-45
3	Information Technology	101COM1601	COM1601 Basics of Python Programming		30-45
4	Commerce	101BAI1601	Investment Management	02	30
5	Geography	101GEO1601	Tourism & Travel Management	02	30
6	NCC Studies	10 <mark>1NC</mark> C1601	Leadership and Personality Development	02	30-45
7	Chemistry	101CHE1601	Pesticides and Green Chemistry	02	30-45
8	Botany	101BOT1601	Mushroom Cultivation Technology	02	30-45
9	English	101ENG1601	Proof Reading and Editing	02	30

Note: Student can choose any one SEC from the basket.

शिक्षण संस्था लातूर

शि आरोह तमसो ज्योतिः।। Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

UG First Year

Basket III: Ability Enhancement Courses (AEC)

(AEC offered to the Science & Technology students in Sem.-I/II)

	Sr.	BoS Proposing AEC	Code	Course Title	Credits	Hrs.
	No.					
Ī	1	English	101ENG71 <mark>01</mark>	English for Professionals	02	30

Rajarshi Shahu Mahavidyalaya, Latur (Autonomous)

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

UG First Year

Extra Credit Activities

Sr. No.	Course Title	Course Title Credits	
			T/P
1	MOOCs	Min. of 02 credits	Min. of 30 Hrs.
2	Certificate Courses	Min. of 02 credits	Min. of 30 Hrs.
3	IIT Spoken English	Min. of 02 credits	Min. of 30 Hrs.
	Courses		

Guidelines:

Extra -academic activities

- 1. All extra credits claimed under this heading will require sufficient academic input/
- 2. Maximum 04 extra credits in each academic year will be allotted.
- 3. These extra academic activity credits will not be considered for calculation of SGPA/CGPA but will be indicated on the grade card.

Additional Credits for Online Courses:

- 1. Courses only from SWAYAM and NPTEL platform are eligible for claiming credits.
- 2. Students should get the consent from the concerned subject Teacher/Mentor/Vice Principal and Principal prior to starting of the course.
- 3. Students who complete such online courses for additional credits will be examined/verified by the concerned mentor/internal faculty member before awarding credits.
- 4. Credit allotted to the course by SWAYAM and NPTEL platform will be considered as it is.

Additional Credits for Other Academic Activities:

- 1. One credit for presentation and publication of paper in International/National/State level seminars/workshops.
- 2. One credit for measurable research work undertaken and field trips amounting to 30 hours of recorded work.
- 3. One credit for creating models in sponsored exhibitions/other exhibits, which are approved by the concerned department.
- 4. One credit for any voluntary social service/Nation building exercise which is in collaboration with the outreach center, equivalent to 30 hours
- 5. All these credits must be approved by the College Committee.

Additional Credits for Certificate Courses:

- 1. Students can get additional credits (number of credits will depend on the course duration) from certificate courses offered by the college.
- 2. The student must successfully complete the course. These credits must be approved by the Course Coordinators.
- 3. Students who undertake summer projects/ internships/ training in institutions of repute through a national selection process, will get 2 credits for each such activity. This must be done under the supervision of the concerned faculty/mentor.

Note:

- 1. The respective documents should be submitted within 10 days after completion of Semester End Examination.
- 2. No credits can be granted for organizing or for serving as office bearers/ volunteers for Inter-Class / Associations / Sports / Social Service activities.
- 3. The office bearers and volunteers may be given a letter of appreciation by the respective staff coordinators. Besides, no credits can be claimed for any services/activities conducted or attended within the college.
- 4. All claims for the credits by the students should be made and approved by the mentor in the same academic year of completing the activity.
- 5. Any grievances of denial/rejection of credits should be addressed to Additional Credits Coordinator in the same academic year.
- 6. Students having a shortage of additional credits at the end of the third year can meet the Additional Credits Coordinator, who will provide the right advice on the activities that can help them earn credits required for graduation.

Rajarshi Shahu Mahavidyalaya, Latur

(Autonomous)

Examination Framework

Theory:

40% Continuous Assessment Tests (CATs) and 60% Semester End Examination (SEE)

Practical:

50% Continuous Assessment Tests (CATs) and 50% Semester End Examination (SEE)

Course	Marks	CAT & Mid Term Theory				CAT Practical		Best Scored CAT & Mid Term	SEE	Total
				3			4			
1	2	Att.	CAT	Mid	CAT	Att.	CAT	5	6	5 + 6
			I	Term	II					
DSC/DSE/	100	10	10	20	10	-	-	40	60	100
GE/OE/Minor		1						7		
DSC	75	05	10	15	10	-	V-	30	45	75
Lab	50	/-	-	-	-	05	20	-	25	50
Course/AIPC/	1									
OJT/FP		0								
VSC/SEC/	50	05	05	10	05	-	-	20	30	50
AEC/VEC/CC			1		151	व छ	त्रप	ता		

Note:

- 1. All Internal Exams are compulsory
- 2. Out of 02 CATs best score will be considered
- 3. Mid Term Exam will be conducted by the Exam Section
- 4. Mid Term Exam is of Objective nature (MCQ)
- 5. Semester End Exam is of descriptive in nature (Long & Short Answer)
- CAT Practical (20 Marks): Lab Journal (Record Book) 10 Marks, Overall Performance 10 Marks.